
Towards Practical Use of Dataflow Matrix Machines

Michael A. Bukatin

March 17, 2021 - July 31, 2023

Dataflow matrix machines (DMMs) form a class of neural machines with very interesting theoretical
properties. On the level of single neurons, they replace streams of numbers by arbitrary streams allowing
linear combinations of several streams (linear streams). It turns out that this change and a few other
modifications make the resulting formalism suitable for general-purpose stream-oriented programming with
continuously deformable programs. At the same time, these neural machines are expressive enough
to provide convenient and flexible facilities for compositional metalearning.

We created experimental research-grade open-source implementations of self-referential dataflow matrix
machines in Processing (with traditional mutable matrices) and in Clojure (with immutable streams of
tree-shaped “flexible tensors”), and conducted a number of open-source software experiments using these
implementations.

It is time to create a more professional implementation of DMMs in one of the modern ultra-flexible
frameworks for differentiable programming such as Julia Flux or JAX, and to start using dataflow matrix
machines in machine learning applications. In particular, one should be able to fruitfully target applications
in program synthesis and in metalearning.

1 Introduction

Many of us know the history of ReLU use in neural networks. In the year 2000, it became apparent that
the use of ReLU induced semantically meaningful sparsity1. At that moment one should have been able to
conclude that ReLU was a very promising activation function. However, the first papers showing that the use
of ReLU actually improved performance on particular benchmarks had only appeared in 2009-20112, and only
then widespread adoption of ReLU had actually started.

I believe that we currently have a somewhat similar situation with DMMs. Their theoretical properties
are very attractive, but the hard work of demonstrating that DMMs can be used to improve performance on
particular benchmarks has not been done yet.

Moreover, when DMMs were introduced in 2015-2017, the existing machine learning frameworks were still
rather rigid, and implementing the most flexible varieties of DMMs would take a lot of labor in frameworks
such as, for example, TensorFlow or PyTorch.

The situation is much more favorable now with the availability of modern ultra-flexible frameworks for
differentiable programming such as Julia Flux or JAX, which seem to fit DMMs quite well.

1.1 Current Status

JAX and Zygote.jl (Julia Flux) are capable of taking gradients with respect to variables stored inside nested
dictionaries3.

First successful experiments in DMM training and in program synthesis/circuit synthesis/DMM synthesis
via neural architecture search were performed in June 2022 using Zygote.jl. The synthesized DMMs had pretty
impressive generalization properties.4.

1Richard Hahnloser, Rahul Sarpeshkar, Misha Mahowald, Rodney Douglas, H. Sebastian Seung. Digital selection and analogue
amplification coexist in a cortex-inspired silicon circuit. Nature, 405, pp. 947–951 (2000). The reasons for sparsity induction by
ReLU are similar to the reasons for sparsity induction by L1 regularization, which not surprising given that L1 regularization adds
the regularization term α

∑
(ReLU(wij) + ReLU(−wij)) to the loss function.

2Kevin Jarrett, Koray Kavukcuoglu, Marc’Aurelio Ranzato, Yann LeCun. What is the Best Multi-Stage Architecture for
Object Recognition?, ICCV’2009; Vinod Nair, Geoffrey Hinton, Rectified Linear Units Improve Restricted Boltzmann Machines,
ICML’2010; Xavier Glorot, Antoine Bordes, Yoshua Bengio. Deep Sparse Rectifier Neural Networks. AISTATS’2011.

3See https://github.com/anhinga/jax-pytree-example and
https://github.com/anhinga/julia-flux-drafts/tree/main/arxiv-1606-09470-section3

4See history.md and JuliaCon2023-talk at https://github.com/anhinga/DMM-synthesis-lab-journal

1

https://github.com/anhinga/jax-pytree-example
https://github.com/anhinga/julia-flux-drafts/tree/main/arxiv-1606-09470-section3
https://github.com/anhinga/DMM-synthesis-lab-journal


2 Choice of Applications

We maintain a list of open problems and promising directions of research related to DMMs5 in order to facilitate
potential interdisciplinary collaborations. I am including the first three sections from that list verbatim as an
appendix.

Here I briefly mention the main directions.

2.1 Program Synthesis

The task of synthesizing a neural machine should be much simpler than a general program synthesis task (the
progress in neural architecture search seems to be ahead of the progress in conventional program synthesis).

2.2 Metalearning

It seems that some kinds of metalearning in neural machines can benefit from increasing the dimension of
network output (or network hidden state) relative to the dimension of the space of its weights. The recent
paper by Kirsch and Schmidhuber6 seems to provide an experimental confirmation of that conjecture. Using
DMMs would allow to push further in that direction.

2.3 Other sections of “Collaborative Research Agenda”

Section 6 provides more detailed considerations of implementation issues. Section 9 outlines what can be done
to further leverage the fact that DMMs can handle streams of probabilistic samples of arbitrary nature without
embedding those samples into vector spaces.

Section 10 notes that standard digital audio synthesis via composition of unit generators is essentially a
flavor of irregular hand-crafted and hand-tuned neural networks using somewhat more powerful neurons (such
as e.g. f(x,a,b) = sin(a*x+b)) and suggests that DMMs should allow us to synthesize visual animations in
the same style. So if one is looking for a more concrete application area for DMMs, neural machines generating
visual animations might be a particularly attractive choice.

Section 11 starts to analyze deep connections which exist between DMMs and attention-based models
including Transformers. Promising directions of research include using what we know about DMMs to shed
some light on the remarkable properties of Transformers and exploring the ways to incorporate key elements
from Transformer architecture into a more flexible DMM setup. In particular, we are trying to see if it is
possible to obtain interesting compact and low training cost models by incorporating attention-inspired and
Transformer-inspired motives into DMMs.

A The first three sections of “Collaborative Research Agenda”

A.1 Background: how they work

The essence of neural model of computations is that linear and non-linear computations are interleaved. Hence,
the natural degree of generality for neuromorphic computations is to work not with streams of numbers, but
with arbitrary streams supporting the notion of linear combination of several streams (linear streams).

Dataflow matrix machines (DMMs) form a novel class of neural machines, which work with wide variety
of linear streams instead of streams of numbers. The neurons have arbitrary arity (arity of a neuron can be
fixed or variable). Of particular note are self-referential facilities: ability to change weights, topology, and the
size of the active part of the network dynamically, on the fly, and the reflection capability (the ability of the
network to analyze its current configuration).

There are various kinds of linear streams. They include streams of numbers, sparse vectors and sparse
tensors (both of finite and infinite dimension), streams of functions and distributions. We found streams of
V-values (flexible tensors based on tree-shaped indices) to be of particular use.

A single dataflow matrix machine can process a large variety of different kinds of linear streams, or it can
be based on a single kind of linear streams, sufficiently expressive for a given class of situations.

5Michael Bukatin. Dataflow Matrix Machines: a Collaborative Research Agenda, September 2022.
https://anhinga.github.io/brandeis-mirror/dmm-collaborative-research-agenda.pdf

6Louis Kirsch, Jürgen Schmidhuber, Meta Learning Backpropagation And Improving It, December 2020.
https://arxiv.org/abs/2012.14905

2

https://anhinga.github.io/brandeis-mirror/dmm-collaborative-research-agenda.pdf
https://arxiv.org/abs/2012.14905


This allows us to obtain neural machines which combine general-purpose programming powers of
stream-oriented architectures such as traditional dataflow programming and more novel functional reactive
programming with good machine learning properties of conventional neural networks.

There are deep connections between DMMs and attention-based models including Transformers. Each input
of a neuron computes a linear combination of linear streams (which tend to be high-dimensional or infinite di-
mensional entities), so each input of each neuron performs a (generalized) attention operation. Transformer-like
rewrites of DMM attention operations in terms of matrix multiplication are also available in many situations.

Dataflow Matrix Machines resources:
Reference paper: https://arxiv.org/abs/1712.07447
Reference slide deck: https://web.archive.org/web/20220305051310/https://researcher.watson.ibm.com/researcher/files/us-lmandel/aisys18-bukatin.pdf

GitHub Pages: https://anhinga.github.io
Open source implementation (Clojure): https://github.com/jsa-aerial/DMM

A.2 Conventional programming and program synthesis

The dimension of the network and the dimension of data are decoupled, so compact neural machines for solving
conventional programming problems are available. For example, by considering streams of maps from words
to numbers, one can build a dataflow matrix machine counting words in a given text which uses only a few
neurons (Section 3 of https://arxiv.org/abs/1606.09470). Similarly, by considering streams of V-values
(flexible tensors based on tree-shaped indices) and embedding of lists into trees, one can build a similarly
compact dataflow matrix machine accumulating a list of asynchronous incoming events (e.g. mouse clicks, see
Section 6.3 of the DMM reference paper, https://arxiv.org/abs/1712.07447).

For more examples of DMMs as programs, see Map of DMM-related programming examples and techniques:
https://github.com/anhinga/2020-notes/tree/master/programming-overview

The task of synthesis of dataflow matrix machines should be more tractable than conventional program
synthesis. When one works with DMMs, the task of learning program sketches is reformulated as neural
architecture search, and converting a program sketch to a full program should be done by conventional methods
of neural net training.

Dataflow matrix machines allow us to combine

� aspects of program synthesis setup
(compact, human-readable programs);

� aspects of program inference setup
(continuous models defined by matrices).

First successful experiments in program synthesis/circuit synthesis/DMM synthesis via neural architecture
search were performed in June 20227.

A.3 Self-modification, learning to learn, and neuroevolution

Using neural networks for metalearning is always non-trivial. In particular, dimension mismatch, namely
the number of neuron outputs being much smaller than the number of network weights, means that a neural
network can only modify itself in a highly constrained manner. Dataflow matrix machines address this problem
and have powerful and flexible self-modification facilities.

Therefore, a dataflow matrix machine can be equipped with a variety of primitives which perform self-
modifications, and it can fruitfully learn various linear combinations and compositions involving those primi-
tives.

Self-modification facilities of dataflow matrix machines are not limited to the weight changes for the existing
connections in the network. The available primitives allow to modify the network topology as well. For
example, primitives allowing the network to control its own fractal-like growth by the means of cloning its own
subnetworks are available.

Therefore, this is a very promising architecture not only for methods of learning to learn better in a
traditional sense, but also for methods of learning to perform neural architecture search better.

7See history.md at https://github.com/anhinga/DMM-synthesis-lab-journal

3

https://arxiv.org/abs/1712.07447
https://web.archive.org/web/20220305051310/https://researcher.watson.ibm.com/researcher/files/us-lmandel/aisys18-bukatin.pdf
https://anhinga.github.io/
https://github.com/jsa-aerial/DMM
https://arxiv.org/abs/1606.09470
https://arxiv.org/abs/1712.07447
https://github.com/anhinga/2020-notes/tree/master/programming-overview
https://github.com/anhinga/DMM-synthesis-lab-journal


A dataflow matrix machine can comfortably host an evolving population of other DMMs inside itself, so it
is an excellent environment for neuroevolution experiments and, in particular, for the experiments aiming to
learn to evolve better (or to evolve to evolve better).

In our software experiments, we used self-modification facilities to

� produce controlled wave patterns in the network matrix (see Appendix B.2 of our LearnAut 2017 paper,
https://arxiv.org/abs/1706.00648);

� create randomly initialized self-referential DMMs which generated interesting emerging behaviors (see
Section 1.2 of our 11-2018 technical report, dmm-notes-2018.pdf);

� edit a running network on the fly by sending it requests to edit itself (in particular, this enables live-
coding, but this is also quite open-ended, since it enables a population of networks to tell each other
to modify themselves; of course, the receiving network doesn’t have to follow an incoming instruction
to self-modify blindly, although in the most simple-minded case it would do so; see Section 1.1 of our
11-2018 technical report, dmm-notes-2018.pdf).

4

https://arxiv.org/abs/1706.00648
https://www.cs.brandeis.edu/~bukatin/dmm-notes-2018.pdf
https://www.cs.brandeis.edu/~bukatin/dmm-notes-2018.pdf

	Introduction
	Current Status

	Choice of Applications
	Program Synthesis
	Metalearning
	Other sections of ``Collaborative Research Agenda"

	The first three sections of ``Collaborative Research Agenda"
	Background: how they work
	Conventional programming and program synthesis
	Self-modification, learning to learn, and neuroevolution


