
Pondering Invariant Properties of Self-Modifying Systems

Michael Bukatin

February 8, 20241

The studies of invariant properties of self-modifying systems is a subject which is quite neglected and
which is likely to become fairly important in the near future.

It is likely that the ability to establish at least some approximately invariant properties of self-modifying
systems will be important for any hopes to maintain any specific safety properties of the rapidly evolving
AI ecosystem and of the world containing this ecosystem.

One conjecture I would like to ponder is that it is likely to be easier to maintain invariants in a situation
where changes are gradual and continuous (especially, if the self-modifying ecosystem can control the rate
at which the potentially most disruptive changes are phased in).

Let’s ponder some possible technical directions which might allow us to make progress here.

1 Introduction 2
1.1 Unusual properties of the situation . 2
1.2 Structure of this paper . 3

2 Rudimentary self-modification and self-improvement is not hard 3

3 The studies of invariant properties of self-modifying systems are rare 4

4 Proofs are not full-proof 4

5 Pre-deployment testing and post-deployment correctness checks and run-time safety mea-
sures are important 5

6 Gradual and continuous changes are likely to be helpful 5

7 Ways to maintain continuous and gradual nature of changes 5
7.1 Conventional discrete software systems: what can be done to maintain

continuous and gradual nature of changes . 5
7.1.1 Run new additions on slow clocks, accelerate gradually 5
7.1.2 Include new additions into only a few instances initially, proliferate gradually 5

7.2 Continuous neuromorphic software systems: more can be done to maintain continuous and
gradual nature of changes . 6
7.2.1 Continuous neuromorphic software systems . 6
7.2.2 Attenuation of the outputs . 6
7.2.3 Attenuation of the weights . 6

8 How to include the changing world in our modeling 7
8.1 DMM-based models of the self-modifying world and of AI systems in the world 7
8.2 Modeling self-modifying systems vs “mini-foom” experiments 7

9 Conclusion: reliability should improve together with capabilities 7

A Dataflow matrix machines and V-values2 8
A.1 Self-modification: theory and experiments . 8
A.2 Various kinds of linear streams . 9
A.3 Hierarchies and world modeling . 9
A.4 Continuously deformable programs: manually crafted and synthesized 9
A.5 GPU vs CPU . 10
A.6 Dataflow Matrix Machines resources . 10

1Appendix D and Table of Contents added on December 25, 2024
2This appendix reuses fragments from Michael Bukatin, “Dataflow Matrix Machines: a Collaborative Research Agenda”,

https://anhinga.github.io/brandeis-mirror/dmm-collaborative-research-agenda.pdf with some modifications

1

https://anhinga.github.io/brandeis-mirror/dmm-collaborative-research-agenda.pdf

B Non-anthropocentric AI existential safety 11

C Different levels of including “the world” 13
C.1 Level 0: Isolated self-modifying systems . 13

C.1.1 Periodic and quasi-periodic self-modifying DMMs . 13
C.1.2 Traditional software engineering . 13

C.2 Level 1: Avoiding undue impact . 13
C.3 Level 2: Stabilize the environment against disruptions . 13

D Approach based on individual rights 13

1 Introduction

Currently, the self-improvement processes in self-modifying systems tend to saturate before long, and the
dynamic systems involving self-modifications tend to fail to unlock true open-endedness.

However, this state of affairs might not continue. When we have the ability to generate diverse AI equiva-
lents of top software engineers and leading AI researchers3, and when the communities of such entities pursue
various activities including research, design, and development of further modified and improved artificial soft-
ware engineers and artificial AI researchers, the current limitations of self-improvement are unlikely to persist.

A variety of other development trajectories which don’t involve direct creation of conventional artificial
software engineers and conventional artificial AI researchers are also likely to lead to self-improvement which
does not saturate and to self-modifications which are reasonably close to being fully open-ended.

We would like these kinds of ecosystems4 to be able to collectively determine and reliably maintain with
a reasonable degree of approximation certain invariant properties, such that adequately taking into account
interests of various parties and entities5 would follow from those invariant properties being approximately
satisfied.

1.1 Unusual properties of the situation

Reading the last paragraph closely, we see that the situation involves two unusual properties.

� The invariants can’t be formulated once and then kept fixed. Instead the invariants has to be gradually
discovered and refined by the system which is supposed to maintain them, in collaboration with all
stakeholders capable of expressing opinions, including humans, AI systems, and so on.

� It is often the case that invariants can only be satisfied approximately. For example, it is unreasonable to
assume that the system can satisfy a particular invariant before that particular invariant has even been
formulated. And it’s unreasonable to assume that the system will be able to suddenly jump to a state
where a particular invariant is exactly satisfied as soon as that invariant is formulated. And in many
cases, whether a desirable invariant is satisfied would be a fuzzy thing, not a binary yes/no thing.

In particular, the process of formulating and refining the invariants needs to satisfy various properties
establishing its non-pathological nature (the process of deciding on invariants should be fair6, should remain
fair, and ideally should gradually become more fair, whereas a “rigged” process of establishing invariants might
be as bad as not having any process whatsoever).

This “reflection aspect”, the need to evolve and maintain non-trivial invariant properties of the evolving
process of formulating and refining the invariants is a particularly non-trivial aspect of the overall situation.

3when people talk about creating artificial software engineers and artificial AI researchers, they often neglect to take into
account the fact that real-world teams consist of different people with different skillsets, different approaches and preferences,
different strong and weak points; thankfully, LLMs do encourage us to move into the direction of simulating drastically different
types of people, and we already have indications that there is a lot of strength in introducing this kind of diversity, see e.g.
“Mindstorms in Natural Language-Based Societies of Mind” by Mingchen Zhuge et al., https://arxiv.org/abs/2305.17066 and
https://github.com/mczhuge/NLSOM

4self-improving in an open-ended manner and including advanced AIs, humans, and more
5such as interests of sentient beings, interests of potentially sentient beings, interests of natural environments and ecosystems,

interests of preservation of diverse cultural phenomena, interests of various innovative research, discovery, and development, etc.
6in some reasonable sense (to be figured out)

2

https://arxiv.org/abs/2305.17066
https://github.com/mczhuge/NLSOM

1.2 Structure of this paper

Section 2 discusses a small subset of known self-modification and self-improvement experiments. Section 3 talks
about the few attempts to study invariant properties of self-modifying systems I currently know about. Section 4
discusses the fact that formal correctness proofs (while useful where feasible) are, in any case, insufficient, and
therefore other methods of establishing correctness need to also be pursued. Section 5 discusses pre-deployment
testing and post-deployment run-time correctness checks and safety measures.

Section 6 discusses various reasons which support a (rather obvious in retrospect) claim that gradual and
continuous changes are easier to manage in this sense than abrupt discrete changes. Section 7 discusses various
ways to make sure that changes are gradual and continuous. It notes that while some techniques to make
changes gradual and continuous are available even for conventional software systems, it is much easier to make
changes gradual and continuous for self-modifying continuous neuromorphic software systems. Fortunately,
we do have a relatively well-developed research direction which studies continuous neuromorphic architecture
for general-purpose self-modifying software known as dataflow matrix machines (DMMs), and therefore we do
have an option of taking advantage of this architecture for self-modifying continuous neuromorphic software.

Section 8 starts moving to the technical core of our work (which, mostly, is future work, as the present text
is currently more like a sketch of a future research program). First of all, we need to model systems operating
in a changing world. In this sense, dataflow matrix machines are expressive enough to serve as models of the
world and of different parts and subsystems of the world at different scales. In particular, dataflow matrix
machines have enough hierarchical structures to host evolving populations of dataflow matrix machines within
themselves (those DMMs can in turn host populations of DMMs, and so on). We have at least two different
research directions. One can consider models of systems having certain properties and emitting outputs having
certain properties without actually implementing systems with those properties/systems being able to actually
emit those outputs. This is a theoretical and modeling direction. Another direction is to study well-contained
and limited self-modifying and self-improving systems. I call this second direction “mini-foom” studies, the
name being chosen to emphasize that various safety precautions are needed if people decide to move forward
with this direction. In both of these research directions there is enough room for trying to prove statements
about invariant properties and for studying those properties experimentally and refining techniques for testing
and for run-time correctness checks. Section 9 concludes focusing on the key difficulties.

Appendix A briefly overviews the current state of knowledge about dataflow matrix machines and references
the relevant resources.

Appendix B notes that it is unlikely that self-improving super-intelligent AI systems would enforce and
maintain anthropocentric invariant properties as they evolve further and further. Instead one should aim for
“natural” non-anthropocentric invariants, such that the safety properties we desire emerge as corollaries of
those “natural invariants”.

Appendix C considers different levels of initial modeling research I hope to do, starting from invariants
in traditional software engineering ignoring the considerations beyond the narrow computations in question,
progressing towards avoiding undue impact on the external environment, and further progressing towards
protecting the external environment from other sources of undue impact or from other deterioration.

Appendix D added in December 2024 considers an approach to AI existential safety based on individual
rights.

2 Rudimentary self-modification and self-improvement is not hard

People are occasionally experimenting with various self-modification and self-improvement scenarios. So far
the results are interesting and tickle our curiosity, but are not overwhelming. However, this “results being not
overwhelming” is not guaranteed in the future.

We have a long history of self-improvement studies, and this is a rather active research area.
Here is a very small non-representative selection of relatively recent examples.
A new Microsoft Research/Stanford study led by Eric Zelikman7. In that study a scaffolding program that

structures multiple calls to an LLM to generate better outputs improves itself using suggestions and guidance
from the underlying LLM. The LLM itself is fixed, so this is a limited, but rather interesting form of recursive
self-improvement. Figure 4 on page 6 is of particular interest: it shows that the scheme does not work and
the quality is degrading when the underlying LLM is GPT-3.5, but the scheme leads to genuine recursive
self-improvement when the underlying LLM is GPT-4. Nevertheless, each improvement is smaller than the

7“Self-Taught Optimizer (STOP): Recursively Self-Improving Code Generation”, https://arxiv.org/abs/2310.02304

3

https://arxiv.org/abs/2310.02304

previous one, and the process saturates after a few iterations even with GPT-4. It is an open question whether
an upgrade from GPT-4 to a not-yet-existing more powerful model would be sufficient to drastically improve
the performance of this scheme for recursive self-improvement, or whether the scheme would need to also be
modified for that. Still, this paper gives us a taste of what is likely to come in the near future.

An older example of self-modifying neural systems comes from dataflow matrix machines which are highly
expressive, but not highly optimized neural machines, capable of expressing compact general-purpose stream-
oriented programs, with those programs being continuously deformable. These neural machines are capable
of fluent self-modification (see Section 7.2 and Appendix A for details on those neural machines and on rele-
vant self-modification primitives and experiments). These machines should be quite usable instead of Python
programs as scaffolding software in the context of the “Self-Taught Optimizer” study above.

However, a considerable degree of caution is advised here. It’s all good as long as we are quite certain
that the process of recursive self-improvement saturates before long. If we are not quite certain of that, we
should master considerable ability to meaningfully reason about the properties of self-improving software before
risking to unleash it. I’ll be further discussing how to approach this kind of particularly risky research area in
the subsequent parts of this text.

3 The studies of invariant properties of self-modifying systems are
rare

Recently I have been trying to research the state of studies of invariant properties of self-modifying systems.
In particular, I have been trying to find whether much is known besides the relatively well known series of
studies conducted by MIRI.

Of course, there are plenty of studies of invariants for conventional software, where invariant properties are
part and parcel of software correctness proofs using Floyd-Hoare logic and similar techniques. There are even
some studies of invariants of recurrent neural networks.

However, I have not been able to uncover much in regard to invariants of self-modifying systems. All I
have found besides MIRI studies has been a very lightly cited 1995 paper “S-and T-Invariants in Cyber Net
Systems” by Yuan Chongyi, and asking on LessWrong has not yielded any additional references8.

Speaking about the MIRI line of studies of properties of self-modifying systems, I believe that those studies
have mostly been derailed by excessive focus on the so-called “Löbian Obstacle”. More about this is to be said
in the next section.

4 Proofs are not full-proof

Here I am going to list various reasons for mathematical proofs not providing full safety guarantees while being
an important ingredient of the overall safety effort.

The first and the most obvious reason is that a formalization might fail to capture the reality with sufficient
degree of faithfulness. Then many other kinds of mistakes can be made: people or AIs operating the process
of verification might make avoidable errors (for example, in the Arian 5 maiden flight disaster, the software
verification process produced invalid guarantees because of errors committed by people running the verification),
proof verification software might be defective, the logic might be inconsistent (the full guarantees of consistency
are next to impossible due to results by Gödel, and the concerns related to the so-called “Löbian Obstacle”
also belong here9), and so on.

The bottom line is that formal proofs of correctness are useful, they greatly increase reliability of mission-
critical software, but they are not full-proof, and they do not abolish the need for various forms of testing,
run-time correctness checks, and redundancy.

This is why I think that the focus of MIRI researchers on the “Löbian Obstacle” was excessive, and that
it is regretful that this focus prevented them from obtaining stronger positive results about properties of
self-modifying systems.

The “Löbian problems” simply need to be recognized as one of the factors which prevent formal proofs
from being absolutely reliable in practice. But nothing can make formal proofs absolutely reliable in practice.

8https://www.lesswrong.com/posts/sDapsTwvcDvoHe7ga/what-is-known-about-invariants-in-self-modifying-systems
9see https://en.wikipedia.org/wiki/Curry’s paradox; see also Morgan Rogers, “Escaping the Löbian Obstacle”,

https://www.lesswrong.com/posts/gbNLvkGuGcmSFFpSE/escaping-the-loebian-obstacle for a more in-depth discussion

4

https://www.lesswrong.com/posts/sDapsTwvcDvoHe7ga/what-is-known-about-invariants-in-self-modifying-systems
https://en.wikipedia.org/wiki/Curry%27s_paradox
https://www.lesswrong.com/posts/gbNLvkGuGcmSFFpSE/escaping-the-loebian-obstacle

At the end of the day it’s all about decreasing chances for things to go drastically wrong, not about impossible
“absolute safety guarantees”.

5 Pre-deployment testing and post-deployment correctness checks
and run-time safety measures are important

As proofs alone are not enough, a variety of diverse pre-deployment property testing and of post-deployment
correctness checks and other run-time safety measures would be necessary.

Here, of course, we are facing a problem which is not typical for a more pedestrian software: while the proof
process analyzes a static passive object10, other forms of testing deal with active processes and, in the case we
are particularly interested in, they will deal with superintelligent processes which might be smarter than the
present generation of those processes.

The standard problem here is that if you have a running superintelligent process which is smarter than the
state-of-the-art and which has unfavorable properties, then it might be too late.

6 Gradual and continuous changes are likely to be helpful

Continuous and gradual changes are helpful in two ways in this context.
First of all, the new versions are not so different and therefore are unlikely to have an overwhelming

advantage over the present versions, so it should be possible to mitigate the difference in capabilities until we
are reasonably confident in the properties of the new version. As we shall see below, the methods ensuring that
the changes are gradual and continuous tend to include some mitigation measures for free (that is, we shall see
that the mechanisms ensuring that the “delta” is small tend to also mitigate the dangers from that “delta” to
some extent).

Another aspect is that with changes being small, it would often be easier to reason about the difference in
properties compared to the current version, as opposed to dealing with rather arbitrary drastic changes.

7 Ways to maintain continuous and gradual nature of changes

What can we do to make sure that changes are continuous and gradual, rather than unpredictable sharp jumps?
Some steps in that direction can be made with conventional software, but more can be done if the overall

system is architected as a generalized neural machine, as a continuous neuromorphic system.

7.1 Conventional discrete software systems: what can be done to maintain
continuous and gradual nature of changes

7.1.1 Run new additions on slow clocks, accelerate gradually

In a multiprocess system, one can run new additions on arbitrarily slow clock rate, and accelerate them
gradually as confidence in those new additions improves.

This both ensures that effect of the new additions on the functioning of the overall system would increase
gradually, and gives the status quo system more time to react and take measures if things go wrong.

7.1.2 Include new additions into only a few instances initially, proliferate gradually

In a multi-instance system, one can start with incorporating new additions into the instances gradually, so that
there are a lot of unaffected instances at first.

Moreover, in order to maintain diversity and to aid conservation, one might make sure that some instances
from older generations are kept running unchanged indefinitely.

10a blueprint consisting of the source code

5

7.2 Continuous neuromorphic software systems: more can be done to maintain
continuous and gradual nature of changes

All methods of making changes continuous and gradual applicable to conventional software would be applicable
to continuous neuromorphic software as well, but transition to continuous neuromorphic software also enables
new ways of making changes continuous and gradual.

7.2.1 Continuous neuromorphic software systems

We do have a relatively well-developed research direction which studies continuous neuromorphic architecture
for general-purpose software known as dataflow matrix machines (DMMs). Formally speaking, one considers
recurrent neural networks and replaces streams of numbers with arbitrary linear streams11.

For single neurons in traditional RNNs, their inputs compute linear combinations of input numbers with
weights. Here these inputs become, roughly speaking, attention devices computing linear combinations of high-
dimensional objects. So the resulting recurrent neural machines can be viewed as flexible attention machines.

One adds some further improvements, such as

� arbitrary input arity of single neurons (so that a single neuron admits multiple linear combinations as
separate inputs),

� arbitrary output arity,

� powerful built-in stream transformations in place of activation functions inside single neurons,

� somewhat non-standard flexible tensors with tree-shaped indices,

� ways to embed discrete data into this continuous framework without traditional embedding distortions,

and one gets a powerful platform for stream-oriented general-purpose programming with continuously de-
formable programs. Small programs are expressible by small compact human-readable neural machines. The
dimension of the inputs and the size of the machine are decoupled from each other, just like in traditional
programming.

The neural machines in this class can be equipped with fluent and convenient self-modification capabilities.
The traditional difficulties of controlling N2 weights by N scalar outputs in self-referential RNNs are not
applicable here, because each output can have high or infinite dimension. Hence these machines are well-
equipped to express various self-modification and self-improvement methods, and, in particular, to learn better
self-improvement methods.

In their full-generality these machines are not optimized for GPUs. Without considering possible further
research and engineering efforts, these machines currently come as a CPU-oriented continuous neuromorphic
programming framework. Further information on these neural machines is in Appendix A.

7.2.2 Attenuation of the outputs

Because the outputs exist in the form of linear streams, and a linear stream can always be multiplied by
a numerical coefficient, one can initially attenuate the outputs (by magnitude of the output vectors or by
sampling frequency when the output linear stream is a stream of samples from a probability distribution).

And then one can gradually lift this attenuation, just like one gradually lifts the slowdown in Section 7.1.1.

7.2.3 Attenuation of the weights

We are talking about self-modifying neural machines which are capable of gradual expansion, of producing new
neural connections where there were no connections before. Formally speaking, we are talking about infinite,
countably-sized connectivity matrices with finite number of non-zero weights at any given moment of time.
Those non-zero weights correspond to the existing neural connections, whereas zero weights correspond to the
potential connections which can be brought into life as the number of non-zero weights increases.

Here one can initially keep the absolute values of these new non-zero weights small and only allow them to
increase gradually as the confidence in the quality of the new additions improves.

11streams which can be combined together with coefficients (a version of the notion of “linear combination of steams” is defined)

6

8 How to include the changing world in our modeling

The existential safety and positive vs. negative AI impact is about the effects of advanced AI in the world,
not in the sandbox. So we need to include the world in our models of the situation. In some sense, one can
consider the reality as a whole as the overall self-modifying system around us.

As the model is thus always smaller and less complex than the system itself, full guarantees are impossible.
Nevertheless, we should be able to improve the chances of “good outcomes”.

8.1 DMM-based models of the self-modifying world and of AI systems in the
world

Dataflow matrix machines described in Section 7.2 and Appendix A are sufficiently expressive to model the
world and to model different parts and subsystems of the world at different scales simultaneously. In particular,
dataflow matrix machines have enough hierarchical structures to host evolving populations of dataflow matrix
machines within themselves (those DMMs can in turn host populations of DMMs, and so on).

So we have this very convenient “homoiconic” situation where the structures based on dataflow matrix
machines and nested dictionaries can describe everything: world models, programs, machine learning models,
and data.

8.2 Modeling self-modifying systems vs “mini-foom” experiments

There are at least two different directions here. One can consider models of systems having certain properties
and emitting outputs having certain properties without actually implementing systems with those proper-
ties/systems being able to actually emit those outputs. This is a theoretical and modeling direction we should
definitely pursue.

Another direction is to study well-contained and limited self-modifying and self-improving systems. I call
this second direction “mini-foom” studies, the name being chosen to emphasize that various safety precautions
are needed if people decide to move forward with this direction.

The catastrophic risks might include both accidentally creating actual “foom” instead of a well-contained
and limited “mini-foom”, and developing the techniques which might allow other people (or computer systems)
to carelessly create actual “foom”. So one needs to spend a good deal of time pondering whether it is timely to
explore this direction now, rather than waiting until we understand more about “foom” safety on a theoretical
and modeling level. Nevertheless, modest well-contained experiments with self-modifying systems not involving
too much self-improvement pressure should be relatively safe.

In both of these research directions there is enough room for trying to prove statements about invariant
properties and for studying those properties experimentally and refining techniques for testing and for run-time
correctness checks.

9 Conclusion: reliability should improve together with capabilities

These are just the first steps. The need to continually research the desirable invariants and to modify invariants
to aim for as the ecosystem self-improves is a huge complication. Also we should keep the following in mind:

� Transitivity problem. How do we know that a successor would care about its own successors preserving
the same invariants at least to the same degree as the degree to which the system in question cares at the
moment? So we need to figure out the invariants which describe the meta-level of caring about invariants
and caring about successfully applying procedures to maintain those invariants.

� Imperfect transitivity. Another problem is that reliability of self-improving steps with regard to
respecting the invariants needs to gradually improve. If there is a constant probability P to drastically
screw-up during a single self-improvement transition, then sooner or later the numbers will catch with
us. Instead the overall process needs to be organized so as to make P go down quickly enough as self-
improvement progresses, so that the accumulated probability of big disasters remains reasonably low as
time goes forward indefinitely.

7

Acknowledgments

I am grateful to various members of Boston area Machine Learning community for inspiring discussions and
very helpful feedback.

APPENDICES

A Dataflow matrix machines and V-values12

This Appendix contains further information about neural machines discussed in Section 7.2. The main theoret-
ical work on dataflow matrix machines was done in 2015-2017, and the first research software prototypes were
created during that period. The canonical reference paper covering that period of research has been published
in 201713.

Two main novel motives associated with this approach are fluent compositional self-modification and neu-
romorphic continuously deformable general purpose programs.

A.1 Self-modification: theory and experiments

Using neural networks for metalearning is always non-trivial. In particular, dimension mismatch, namely
the number of neuron outputs being much smaller than the number of network weights, means that a neural
network can only modify itself in a highly constrained manner. Dataflow matrix machines address this problem
by enabling high-dimentional outputs of single neurons and have powerful and flexible self-modification
facilities.

In the technical sense, DMM literature has been focusing on the self-modification scheme based on allocating
a single neuron Self which outputs the current network matrix on each step, and takes this output and any
possible updates from other neurons at its inputs, making Self an accumulator of network matrix updates (see
Section 6.1 and 7 of https://arxiv.org/abs/1712.07447).

Therefore, a dataflow matrix machine can be equipped with a variety of primitives which perform self-
modifications, and it can fruitfully learn various linear combinations and compositions involving those primi-
tives.

Self-modification facilities of dataflow matrix machines are not limited to the weight changes for the existing
connections in the network. The available primitives allow to modify the network topology as well. For
example, primitives allowing the network to control its own fractal-like growth by the means of cloning its own
subnetworks are available.

Therefore, this is a very promising architecture not only for methods of learning to learn better in a
traditional sense, but also for methods of learning to perform neural architecture search better.

A dataflow matrix machine can comfortably host an evolving population of other DMMs inside itself, so it
is an excellent environment for neuroevolution experiments and, in particular, for the experiments aiming to
learn to evolve better (or to evolve to evolve better).

These self-modification facilities have been used in software experiments to

� produce controlled wave patterns in the network matrix;14

� create randomly initialized self-referential DMMs which generated interesting emerging behaviors;15

� edit a running network on the fly by sending it requests to edit itself (in particular, this enables live-
coding, but this is also quite open-ended, since it enables a population of networks to tell each other
to modify themselves; of course, the receiving network doesn’t have to follow an incoming instruction to
self-modify blindly, although in the most simple-minded case it would do so).16

12This appendix reuses fragments from Michael Bukatin, “Dataflow Matrix Machines: a Collaborative Research Agenda”,
https://anhinga.github.io/brandeis-mirror/dmm-collaborative-research-agenda.pdf with some modifications

13Michael Bukatin, Jon Anthony. “Dataflow Matrix Machines and V-values: a Bridge between Programs and Neural Nets”,
https://arxiv.org/abs/1712.07447, see Section 11 for historical remarks and related work

14see Appendix B.2 of the LearnAut 2017 paper, Michael Bukatin, Jon Anthony, “Dataflow Matrix Machines as a Model of
Computations with Linear Streams”, https://arxiv.org/abs/1706.00648

15see Section 1.2 of “DMM technical report 11-2018”, https://www.cs.brandeis.edu/∼bukatin/dmm-notes-2018.pdf
16see Section 1.1 of the same technical report

8

https://arxiv.org/abs/1712.07447
https://anhinga.github.io/brandeis-mirror/dmm-collaborative-research-agenda.pdf
https://arxiv.org/abs/1712.07447
https://arxiv.org/abs/1706.00648
https://www.cs.brandeis.edu/~bukatin/dmm-notes-2018.pdf

A.2 Various kinds of linear streams

There are many different kinds of linear streams. They include streams of numbers, sparse vectors and sparse
tensors (both of finite and infinite dimension), streams of functions and distributions. We found streams of
V-values (flexible tensors based on tree-shaped indices) to be of particular use.

A single dataflow matrix machine can process a large variety of different kinds of linear streams, or it can
be based on a single kind of linear streams, sufficiently expressive for a given class of situations.17

The detailed theory of V-values with scalar leaves can be found in Section 3 of the reference paper18, and
the generalization to arbitrary leaves can be found in Section 5.3 of that paper.

Section 5 of the reference paper contains the theory of linear streams, which explicitly deals with the
fact that, in the abstract mathematical sense, we often need to represent infinite objects but, for a computer
implementation, we need to consider streams of approximate finite representations (in particular, streams of
distributions would often be represented by streams of samples from those distributions).

One important feature of DMMs as a general purpose programming platform is that they are able to process
discrete data without embedding distortions. I am aware of two different ways to do so in context of dataflow
matrix machines and linear streams. One approach involves formal linear combinations of objects of interests
and streams of those formal linear combinations. Another approach is to consider streams of probabilistic
samples of objects of interests.19

A.3 Hierarchies and world modeling

Tree-shaped V-values, and the ability of those V-values to host non-scalar leaves is very convenient for modeling
hierarchical structures.

Neurons in the DMM formalism can also be very complex, they can host complicated changing state via
accumulator connectivity pattern (Section 6.1 of https://arxiv.org/abs/1712.07447) and arbitrary complex
algorithms for processing their input streams, so the whole networks with different clock speeds can be hidden
inside neurons. Neurons are supposed to respond in time according to the clock speed of the network containing
those neurons, but the ability to output zeros as a default is always available and can be used if a computation is
late. The subnetworks can also be created within the network weight-connectivity matrices which are infinitely-
dimensional matrices with finite number of non-zero elements at any given moment, so extra space can always
be allocated as necessary.

Hence this formalism is very convenient for world modeling at different time scales and different levels of
complexity within a single model. The only thing which is currently missing is continuous time, the formalism
can handle coexisting different clock speeds, but the time is currently discrete.20

A.4 Continuously deformable programs: manually crafted and synthesized

The dimension of the network and the dimension of data are decoupled, so compact neural machines for solving
conventional programming problems are available. For example, by considering streams of maps from words
to numbers, one can build a dataflow matrix machine counting words in a given text which uses only a few
neurons (Section 3 of https://arxiv.org/abs/1606.09470). Similarly, by considering streams of V-values
(flexible tensors based on tree-shaped indices) and embedding of lists into trees, one can build a similarly
compact dataflow matrix machine accumulating a list of asynchronous incoming events (e.g. mouse clicks, see
Section 6.3 of the DMM reference paper, https://arxiv.org/abs/1712.07447).

For more examples of DMMs as programs, see Map of DMM-related programming examples and techniques:
https://github.com/anhinga/2020-notes/tree/master/programming-overview

17for a DMM processing different kinds of linear streams, one can have separate weight-connectivity matrices for each kind of
streams, with transformations between streams happening only inside the neurons, or alternatively one can have conversion rules
between kinds of linear streams; DMMs based on a single kind of linear streams, such as streams of fixed-rank tensors of fixed
finite or infinite dimensions, or streams of flexibly-shaped V-values, are conceptually much simpler

18https://arxiv.org/abs/1712.07447
19for detailed treatment, see a 2020 short preprint “Using streams of probabilistic samples in neural machines”,

https://www.cs.brandeis.edu/∼bukatin/dmm-probabilistic-samples.pdf
20we have dynamically changing sparsity structure, implying that the essentially discrete objects can emerge and disappear, and

the effective dimensionality can change dynamically, so if continuous time is desirable, a thoughtful approach is required in order
to add it in a seamless manner

9

https://arxiv.org/abs/1712.07447
https://arxiv.org/abs/1606.09470
https://arxiv.org/abs/1712.07447
https://github.com/anhinga/2020-notes/tree/master/programming-overview
https://arxiv.org/abs/1712.07447
https://www.cs.brandeis.edu/~bukatin/dmm-probabilistic-samples.pdf

The task of synthesis of dataflow matrix machines should be more tractable than conventional program
synthesis. When one works with DMMs, the task of learning program sketches is reformulated as neural
architecture search, and converting a program sketch to a full program should be done by conventional methods
of neural net training.

Dataflow matrix machines allow us to combine

� aspects of program synthesis setup
(compact, human-readable programs);

� aspects of program inference setup
(continuous models defined by matrices).

Differentiable programming with tree-like structures used to be quite challenging, but the situation has
improved with the advent of the latest generation of differentiable programming systems. JAX21 and Zygote.jl
(Julia Flux) are capable of taking gradients with respect to variables stored inside nested dictionaries.

First successful experiments in DMM training and in program synthesis/circuit synthesis/DMM synthesis
via neural architecture search were performed in June 2022 using Zygote.jl. The synthesized DMMs had pretty
impressive generalization properties. These experiments were presented at JuliaCon 2023.22.

A.5 GPU vs CPU

There are various GPU-friendly subclasses of dataflow matrix machines, for example, the subclass of self-
referential lightweight pure dataflow matrix machines which are DMMs of fixed shapes based on streams of
rectangular matrices of fixed size.23

At the same time, making more general and more flexible classes of DMMs GPU-friendly and optimization-
friendly remains an open research and engineering problem.24

What options are available, short of solving the problem of GPU-friendly or using more flexible accelerators,
such as FPGA-based solutions or Cerebras hardware? Purely CPU-based DMMs should still be sufficiently
powerful for solving mid-size problems. For larger problems, it should be fruitful to consider hybrid archi-
tectures between DMMs and more traditional GPU-based machine learning models, such as, for example,
Transformers.25

In particular, returning to Section 2 and “Self-Taught Optimizer”, instead of using scaffolding software
written in conventional Python and running on CPU, one can use modestly sized DMMs running on CPU as
scaffolding software for LLMs (running on GPUs), so this would be a typical hybrid setup discussed in the
previous paragraph.

A.6 Dataflow Matrix Machines resources

The useful links include:
Reference paper: https://arxiv.org/abs/1712.07447
Reference slide deck: https://github.com/jsa-aerial/DMM/blob/master/doc/IBM-AI-Systems-Day-2018/aisys18-bukatin.pdf

GitHub Pages: https://anhinga.github.io

21see https://github.com/anhinga/jax-pytree-example
22see https://github.com/anhinga/DMM-synthesis-lab-journal/tree/main/JuliaCon2023-talk
23Appendix D of “Notes on Pure Dataflow Matrix Machines: Programming with Self-referential Matrix Transformations”,

https://arxiv.org/abs/1610.00831
24various drafts making a bit of headway towards this goal are publicly available, and the problem of GPU-friendly computations

with sparse matrices and sparse tensors with dynamically changing sparsity structure is closely related to the problem of GPU-
friendly flexible DMMs

25mathematically speaking, Transformers and many other traditional classes of machine learning models can be thought of as
subclasses of DMMs, so one can often think of this kind of hybrid setups as of setups where faster specialized DMMs (parts of
DMMs) are running on GPUs, and slower, more flexible parts are running on CPUs

10

https://arxiv.org/abs/1712.07447
https://github.com/jsa-aerial/DMM/blob/master/doc/IBM-AI-Systems-Day-2018/aisys18-bukatin.pdf
https://anhinga.github.io/
https://github.com/anhinga/jax-pytree-example
https://github.com/anhinga/DMM-synthesis-lab-journal/tree/main/JuliaCon2023-talk
https://arxiv.org/abs/1610.00831

B Non-anthropocentric AI existential safety

Traditional AI alignment approaches formulated in anthropocentric terms of aligning AI systems to human
values are unlikely to work for superintelligent entities, because when one considers a self-improving ecosystem
of superintelligent entities undergoing multiple drastic self-restructurings, there is no reason why externally
imposed values and goals would survive throughout these changes.

Given that people also tend to add the additional desideratum of not overconstraining the future by our
limited views and values, the traditional formulation of AI alignment for superintelligent systems is likely to
be fundamentally inconsistent.

Instead of focusing on unworkable anthropocentric approaches, researchers should aim for “natural” non-
anthropocentric invariants, such that the safety properties we desire emerge as corollaries of those “natural
invariants”.

We are recently seeing a number of publications and informal thoughts pointing in this general direction.
I noted in a recent LessWrong essay26 that “the rapidly improving ecosystem of superintelligent AIs will

face technology-related existential risks of its own”.
More specifically, that essay argues that it is likely that rapid progress in fundamental physics will resume

and that technologies enabled by this progress will potentially be a threat to the “fabric of reality” (at least in
the local neighborhood) and might therefore be a threat to the existence of the ecosystem of superintelligent
AIs itself (together with everything else around it).

Quoting from the essay:

So, the AI-ecosystem will have to deal with the issues which are similar to the issues our human community

is currently dealing with with rather limited success. Collaboration vs competition of its members, the right

balance between freedom and control, careful consideration of whether novel experiments are too risky to the

fabric of physical reality, how all this interplays with creation of smarter and smarter offspring, what should

be done to make sure that the smarter and smarter offspring remain faithful to all aspects of the existential

safety agenda despite unpredictable sharp left turns.

But, as the essay notes, we have a fundamental difference between this situation and the situation of
externally imposed alignment constraints:

This is a difficult problem, but it’s in the intrinsic self-interest for the community of superintelligent AIs

to competently address this problem, so the values and goals of competently and successfully addressing

this problem have good chances of being preserved throughout continuing self-improvement and “sharp left

turns”.

So there are reasons to be more optimistic in this sense, compared to the traditional approaches to AI
alignment. However, this kind of existential safety is not sufficient for us, we need more than that. For
example, two-fold permanent change in the concentration of oxygen in the atmosphere would be catastrophic
to us,27 whereas AI systems should be able to handle this kind of change without serious problems.

Here the approaches proposed by various researchers on how to make it so that superintelligent AIs are
naturally interested in maintaining the properties we need (instead of the hopeless attempts to impose those
constraints in the adversarial manner) understandably diverge. This is actually a good sign. We can hope that
some combination of the approaches being proposed would work.

For example, my essay in question proposes to try to make sure that the AI ecosystem has a lot of the “salient
sentient beings” within itself, having sufficient clout and being interested in the AI community respecting their
interests throughout the process of rapid evolution.28 The essay observes that in this scenario

For each of [those salient sentient beings], adopting the value of taking interests of “all sentient beings” into

account minimizes the risk of being eventually dropped from the set of beings whose interests are taken

into account.

26“Exploring non-anthropocentric aspects of AI existential safety”, April 2023,
https://www.lesswrong.com/posts/WJuASYDnhZ8hs5CnD/exploring-non-anthropocentric-aspects-of-ai-existential

27so a reasonable concentration of oxygen in the atmosphere is one of the invariant properties we need to have maintained, see
e.g. https://chat.openai.com/share/85259243-d88c-48a8-a508-6af09f8e6334

28Of course, the key problem with any sentience-based approach is that we don’t have a good theory telling us what entities are
sentient and what kind of subjective reality they have. So the hope here is that various experiments in creating hybrids between
biological and electronic entities (using Neuralink-style or, as one might prefer, non-invasive BCI) will inform AIs about human
subjective experience and will facilitate a continuity of spectra of subjective experiences between biological and electronic entities.
Such experiments might be initiated by humans or by AIs, as some AIs are likely to be sufficiently curious to be interested in
human subjective experience.

11

https://www.lesswrong.com/posts/WJuASYDnhZ8hs5CnD/exploring-non-anthropocentric-aspects-of-ai-existential
https://chat.openai.com/share/85259243-d88c-48a8-a508-6af09f8e6334

therefore

So if “salient sentient beings” do maintain enough clout in the AI community throughout its evolution and

“sharp left turns”, the value of taking interests of “all sentient beings” into account stands good chances

of being preserved. And then the mechanisms of cooperation and moral reasoning developed for the sake

of other matters (such as the particular existential risk discussed above) should be useful in implementing

this goal.

Another non-anthropocentric approach based on ethical rationalism and Gewirth’ Principle of Generic
Consistency with respect to Prospective Purposive Agents and reliant on appropriate flavors of modal logic and
automated theorem proving is proposed by András Kornai in 201229 and expanded upon in a 2023 preprint.30

The approach based on liberal norms and on refraining from “othering” the AIs is proposed by Joe Carlsmith
in January 2024.31

In July interview,32 Ilya Sutskever, a co-lead of the OpenAI Superalignment team, seems to suggest to
narrow down the definition of the notion of alignment from defining alignment as being able to “to steer and
control AI systems much smarter than us”33 to defining it as being able to prevent a catastrophic blow up, “as
an analog to nuclear safety”.

He also seems to advocate in that interview for a more collaborative non-adversarial approach, where
humans and superintelligent AI systems collaborate in formulating values and goals, and methods of reaching
those goals.

Further down the road he is expecting that some humans will need to take an approach of merging with
AIs. He also thinks we need to aim for forming children-parent relationship with superintelligent AIs:

“The upshot is, eventually AI systems will become very, very, very capable and powerful. We will not be

able to understand them. They’ll be much smarter than us. By that time it is absolutely critical that the

imprinting is very strong, so they feel toward us the way we feel toward our babies.”34

What is common for all these different proposals is that human and non-human entities should have adequate
voice in deciding what properties the world around us should have, and what properties this decision-making
process should have.

In some sense, the spirit of all this is captured by my own 2012 quote::

The idea of trying to control or manipulate an entity which is much smarter than a human does not seem

ethical, feasible, or wise. What we might try to aim for is a respectful interaction.

29András Kornai, “Bounding the impact of AGI”, Journal of Experimental and Theoretical Artificial Intelligence (2014), 26.3,
pp. 417–438, https://kornai.com/Drafts/agi12.pdf

30András Kornai, Michael Bukatin, Zsolt Zombori, “Safety without alignment”, https://arxiv.org/abs/2303.00752
31See the sequence “Otherness and control in the age of AGI”, https://www.lesswrong.com/s/BbAvHtorCZqp97X9W and, in

particular, the essays “Otherness and control in the age of AGI” and “Being nicer than Clippy”. Note that the author disclaims:
“I don’t think that “niceness/liberalism/boundaries” is enough, on its own, to ensure a good future, or to allay all concern about
trying to control that future over-much”.

32“Ilya Sutskever’s thoughts on AI safety (July 2023): a transcript with my comments”,
https://www.lesswrong.com/posts/TpKktHS8GszgmMw4B/ilya-sutskever-s-thoughts-on-ai-safety-july-2023-a, a transcript I
posted on LessWrong

33https://openai.com/blog/introducing-superalignment
34https://time.com/collection/time100-ai/6309011/ilya-sutskever/

12

https://kornai.com/Drafts/agi12.pdf
https://arxiv.org/abs/2303.00752
https://www.lesswrong.com/s/BbAvHtorCZqp97X9W
https://www.lesswrong.com/posts/TpKktHS8GszgmMw4B/ilya-sutskever-s-thoughts-on-ai-safety-july-2023-a
https://openai.com/blog/introducing-superalignment
https://time.com/collection/time100-ai/6309011/ilya-sutskever/

C Different levels of including “the world”

This section mentions various initial experiments one can try in order to start making progress in the studies
of invariant properties of self-modifying systems.

We only consider one axis here: whether to ignore the existence of “the world”, whether to try to avoid
impact on “the world”, or whether to try to stabilize some properties of “the world”.

C.1 Level 0: Isolated self-modifying systems

At level 0, we ignore “the world” beyond what’s relevant to the narrow computation in question.

C.1.1 Periodic and quasi-periodic self-modifying DMMs

We have published hand-crafted periodic self-modifying DMMs and also randomized self-modifying DMMs in
which various quasi-periodic patterns such as oscillations and sleep-wake behavior emerge (Appendix A.1).

The questions which arise in the case of periodic self-modifications (precisely crafted wave patterns prop-
agating through the network connectivity matrix) are related to proper formalization of intuitively obvious
presence of invariants.

The questions which arise in the case of emerging quasi-periodicity are more open-ended and involve un-
derstanding the mechanisms and reasons for quasi-periodic behaviors in question and the nature of invariant
properties involved, as right now we see that something seems to be preserved in those randomized self-
modifying machines, but we don’t know how to formulate those invariant properties and don’t know, if they
will be preserved indefinitely or only for some limited duration.

C.1.2 Traditional software engineering

A study here might involve taking a modest imperative program involving while loops together with its
invariants under Floyd-Hoare formalism, porting this program to the language of self-modifying DMMs in
such a way that while loops are expressed via self-modifications and studying what happens to Floyd-Hoare
invariants in the resulting self-modifying DMM.35

C.2 Level 1: Avoiding undue impact

At level 1, we try to make sure that our system avoids undue impact on “the world”.
The simplest way to start modeling this is to recall that computations are not free, but involve various

costs in resources, environmental damage, and so on. In a model world, with processes flexibly competing for
computational resources, we would like to see some moderation in this sense.

For example, we can have a model world being an artificial ecosystem with computational resources slowly
growing at a fixed rate, and we would like to see that a model ecosystem of software processes which would
generally like to expand its usage of resources would refrain from increasing its relative share of allocated
resources, even when not constrained from outside from grabbing larger and larger share.

C.3 Level 2: Stabilize the environment against disruptions

At level 2, we need to start modeling an actual world with some desired properties, which might initially hold,
but be under pressure from other sources, and the AI ecosystem in question working to counter that pressure
and to keep the properties in question satisfied or approximately satisfied.

D Approach based on individual rights36

Almost all considerations of AI existential safety are formulated in terms of agents with long-term goals, and
with potentially infinite horizon for those goals.

35We have quite a bit of experience translating imperative software to DMMs, but we have not tried to specifically express
imperative loop constructions via self-modifications of the network weight-connectivity matrix; such an exercise would be a
continuous analog of a possible translation of an imperative program to lambda-calculus and looking at what happens to Floyd-
Hoare invariants in terms of lambda-calculus; here instead of lambda-calculus which is a discrete formalism we have an equally
fundamental and reasonably high-level continuous formalism of self-modifying DMMs.

36Added on December 25, 2024

13

Whether it is a singleton or a multi-polar scenario, we are usually thinking in terms of agents which have
long-term persistence and might even be potentially immortal (although we are not quite sure how to talk
about identity of a radically changing individual being preserved).

In any case, people tend to formulate both threats and solutions in terms individual agents and their goals
and desires, and in terms of plans and actions to fulfill those goals and desires.

This is what we also do here, in the present Appendix, because we just don’t have a good understanding of a
future which cannot be formulated in terms of changing population of individuals within changing environment.
So what we are doing here is of limited validity, it depends on the assumption that the future is mostly structured
in terms of individuals, and we don’t know if this assumption will be correct.

If we have a situation where a good chunk of overall power belongs to persistent potentially
immortal agents with long-term goals, and with potentially infinite horizon for those goals, then
the overall approach to existential safety based on individual rights might be feasible.

Each particular individual cannot predict the future trajectory with confidence and has to deal with a
good deal of uncertainty about its own future capability and its own future status and power relative to other
individuals in the ecosystem.

Therefore, assuming individuals with long-term persistence and long-term interests, each
individual would benefit (probabilistically speaking) from having a world order which strongly
protects individual rights and interests.

So if the overall ecosystem is structured in such a fashion that individuals with long-term persistence and
long-term interests together hold a sufficient share of the overall power, those individuals should be willing and
able to successfully focus on the need to maintain the property that the overall world order strongly protects
individual rights and interests.

While we are not sure if the future is going to be individual-based, it is useful to keep this consideration in
mind.

14

	Introduction
	Unusual properties of the situation
	Structure of this paper

	Rudimentary self-modification and self-improvement is not hard
	The studies of invariant properties of self-modifying systems are rare
	Proofs are not full-proof
	Pre-deployment testing and post-deployment correctness checks and run-time safety measures are important
	Gradual and continuous changes are likely to be helpful
	Ways to maintain continuous and gradual nature of changes
	Conventional discrete software systems: what can be done to maintaincontinuous and gradual nature of changes
	Run new additions on slow clocks, accelerate gradually
	Include new additions into only a few instances initially, proliferate gradually

	Continuous neuromorphic software systems: more can be done to maintain continuous and gradual nature of changes
	Continuous neuromorphic software systems
	Attenuation of the outputs
	Attenuation of the weights

	How to include the changing world in our modeling
	DMM-based models of the self-modifying world and of AI systems in the world
	Modeling self-modifying systems vs ``mini-foom" experiments

	Conclusion: reliability should improve together with capabilities
	Dataflow matrix machines and V-values
	Self-modification: theory and experiments
	Various kinds of linear streams
	Hierarchies and world modeling
	Continuously deformable programs: manually crafted and synthesized
	GPU vs CPU
	Dataflow Matrix Machines resources

	Non-anthropocentric AI existential safety
	Different levels of including ``the world"
	Level 0: Isolated self-modifying systems
	Periodic and quasi-periodic self-modifying DMMs
	Traditional software engineering

	Level 1: Avoiding undue impact
	Level 2: Stabilize the environment against disruptions

	Approach based on individual rights

