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ABSTRACT

Mathematics of Domains

A dissertation presented to the Faculty of the Graduate School of Arts
and Sciences of Brandeis University, Waltham, Massachusetts

by Michael A. Bukatin

Two groups of naturally arising questions in the mathematical theory of domains

for denotational semantics are addressed. Domains are equipped with Scott topology and

represent data types. Scott continuous functions represent computable functions and form

the most popular continuous model of computations.

Covariant Logic of Domains: Domains are represented as sets of theories,

and Scott continuous functions are represented as input-output inference engines. The

questions addressed are: A. What constitutes a subdomain? Do subdomains of a given

domain A form a domain? B. Which retractions are finitary? C. What is the essence of

generalizations of information systems based on non-reflexive logics? Are these general-

izations restricted to continuous domains?

Analysis on Domains:

D. How to describe Scott topologies via generalized distance functions sat-

isfying the requirement of Scott continuity (“abstract computability”)? The answer is

that the axiom ρ(x, x) = 0 is incompatible with Scott continuity of distance functions.

The resulting relaxed metrics are studied.

E. Is it possible to obtain Scott continuous relaxed metrics via measures of

domain subsets representing positive and negative information about domain elements?

The positive answer is obtained via the discovery of the novel class of co-continuous

valuations on the systems of Scott open sets.

Some of these natural questions were studied earlier. However, in each case a

novel approach is presented, and the answers are supplied with much more compelling

and clear justifications, than were known before.
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Chapter 0

Preface

This text represents the results of my research in mathematics of approximation domains

equipped with Scott topology. I would be the first to classify this research as belonging

to the field of pure mathematics, yet it is being presented as a dissertation in computer

science. I think, this demands some explanation.

0.1 Accepted Practice

There is a widely recognized body of computer science applications of the mathematical

theory of domains, reflected in dozens of monographs, and hundreds, if not thousands,

of research papers (some of the related references are in the text). Some of the most

prominent contributors to this theory work at departments of computer science, rather

than at departments of mathematics. Due to these reasons, it is quite often that purely

mathematical research in this field is presented as doctoral dissertations in computer

science, even in the leading schools.

For example, a famous work by Kim Wagner [57] defended as a PhD Thesis in

the School of Computer Science of Carnegie Mellon University, clearly belongs to this

class of research. As my main achievements to this moment are in mathematical theory,

and not in its applications, I believe it appropriate to follow this practice.
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0.2 Recongnized Applications

The main recognized application of domains is to serve as denotational models of pro-

gramming languages. This application is due to Christofer Strachey, who introduced the

idea of denotational semantics, and Dana Scott, who invented approximation domains

equipped with what is now called Scott topology and constructed extensional models of

lambda-calculus by solving reflexive domain equations like D ∼= [D → D]. The classical

textbook describing this class of applications is [53], and there are many successors. It

is widely argued that denotational descriptions of programming languages using approx-

imation domains should be considered canonical definitions of those languages, while

other types of descriptions should be considered as derivative. This viewpoint obviously

has its share of opponents too.

Among more hands-on applications of this approach are verifications of compiler

correctness, uses of abstract interpretation to perform some static analysis of programs,

attempts to produce logical frameworks based on denotational semantics, etc.

Another important application, which emerged in the nineties, is to use domains

to produce computational models for classical mathematical structures and thus to pro-

vide the framework for computations in such structures. This direction of research was

originated by Abbas Edalat, who used domains to generalize the notion of Riemann

integral to fractal spaces and obtained more efficient methods to compute integrals on

such spaces (see [19] and references therein). The research group at Imperial College

headed by Edalat is now working towards constructing systematic models of this kind

for a wide class of mathematical structures (see [20] for the review of these efforts).

0.3 Potential Applications

Many researchers in this field probably have their own lists of prospective applications,

which often do not reduce to the two classes of applications described before. My own

list includes the following.

When denotational semantics was first introduced, it was suggested that the
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canonical approach would be not to produce denotational description of existing lan-

guages, but to design languages fitting the denotational models of interest. While this

approach has not received sufficient development, I believe that the potential for such

development exists.

Another class of applications is related to the potentially possible development

of our abilities to perform computations in domains with reasonable efficiency, i.e. to

be able to find reasonable approximations for a sufficiently wide class of definitions of

domain elements and Scott continuous functions while spending realistic amounts of

resources. We call this open problem Problem A from now on in this text. I cannot

predict at this point, whether such a development is actually possible. However, if it is

possible, one immediate consequence would be the possibility of a generator of prototype

implementations of programming languages based on their denotational semantics.

The central part of this monograph develops theories of relaxed metrics and

co-continuous valuations on domains. This development is just one manifestation of

the rapid evolution of analysis on domains taking place recently. There can be little

doubt that a lot of analogs of basic structures of functional analysis will soon emerge

for domains. If Problem A is actually solved, these analogs should enable us to transfer

various methods of optimization known in classical mathematics into the computational

setting and should lead to the development of the whole new class of advanced methods

for machine learning.

Thus Problem A is quite crucial for the further applicability of this field.

0.4 Simplicity of Presentation and Prerequsites

I make an emphasis on simplicity and intuitive clarity of presentation. The techniques

here are deliberately elementary and non-categorical, except for those rare cases when

categorical methods are unavoidable.

The Introduction can be used as a brief tutorial for the readers, who are not

familiar with the field. The Introduction sacrifices the completeness of presentation of

the standard information on domains for the accessibility.
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Thus the knowledge of domain theory and category theory is not strictly required

to read this text. The reader is, however, expected to be somewhat familiar with basic

notions of the following fields: formal logic, theory of metric and topological spaces,

measure theory.

0.5 Structure of the Text

The Introduction can be thought of as a short tutorial in domain theory and a repository

of its basic definitions. It also contains a detailed overview of other parts of the text.

Part II and Part III constitute the core of the Thesis. Part II presents our results

related to the logic of spaces of fixed points. Part III presents our results in the theory

of generalized distances and measures for domains.

0.6 Electronic Coordinates

Here are some relevant electronic coordinates. I hope they will be alive for a while.

My e-mail address: bukatin@@cs.brandeis.edu

This thesis: http://www.cs.brandeis.edu/∼bukatin/thesis.ps.gz

My papers in computer science:

http://www.cs.brandeis.edu/∼bukatin/papers.html
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Chapter 1

Continuity in Computations

and Scott Domains

Here we present evidence of the continuous nature of computations [10].

1.1 Continuity in Software Engineering

It seems appropriate to start with a real life observation before dealing with mathematical

models. Virtually all software products used today contain a number of bugs, which

lead to refusal to work, crashes, and incorrect processing of data. Yet for a usable

software product these unpleasant effects are observed relatively infrequently, as most

of the time the product works satisfactory. What we should say here is that the real

product is sufficiently close to the ideal product, close enough to be used in lieu of the

unavailable ideal product. This is a phenomenon of continuity. This continuity results

from the process of testing and amending the software and is crucial for our ability to

use any software at all. Moreover, it is quite possible that the ideal product cannot

exist at all (e.g. if the specifications are for an undecidable problem), yet we still can

consider models which contain representatives for such ideal products and for their real-

life approximations.
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The author so far has not encountered studies dealing with this phenomenon

mathematically. Software reliability models do not seem to qualify, because they always

abstract from the nature of the particular software involved and just study the dynamics

of error rates. We would like to see the difference between the ideal software and its

real-life approximation expressed semantically, error classification and rates being built

on top of such semantical structure. We think that such approach to software design is

potentially more promising than the concept of fully verified software.

1.2 Continuity in Constructive Mathematics

Another evidence of continuity of computations comes from effective versions of math-

ematical analysis (constructive, recursive, or intuitionistic analysis — see, for exam-

ple [6, 25]). All constructive functions from constructive real numbers to constructive

real numbers must be continuous. It is impossible to properly treat computations at the

points of discontinuity. If one has to deal with non-continuous functions, they have to

be partially defined — points of discontinuity cannot belong to their domain (although

see [18]).

1.3 Continuity in Denotational Semantics of Program-

ming Languages

The most important and mathematically rich example of a continuous approach to com-

putation is denotational semantics (see, for example, [44, 46, 48, 53, 59, 2]). We briefly

introduce its main ideas here.

Denotational semantics of a formal language is a map S from the space of formal

texts to the certain space of meanings (semantic space). S[[P ]] is a meaning of the formal

text P ; equivalently we say that P denotes S[[P ]].

To provide denotational semantics of the λ-calculus it was necessary to solve

equations D ∼= [D → D] for semantic spaces — the task which looked quite non-trivial
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and which does not have non-trivial solutions if we interpret [D → D] as the set of all

functions from D to D. Topological ideas gave the solution [45, 53].

Continuity in computations always relates closely to the idea of formal approxi-

mation. Interval numbers formally approximate one another, partially defined functions

do the same, etc. The relation of formal approximation usually is a partial order, tradi-

tionally denoted as v. Properties vary in different approaches, but the existence of the

least defined element and of lowest upper bounds of increasing chains (limits of sequences

of better and better formal approximations) is usually required. Topology then is intro-

duced in such a way, that the continuous functions are monotonic functions preserving

limits of increasing chains. The resulting topological spaces are called domains.

It is natural to require of correctly defined computational processes that the

better formal approximation of an input is known, the better formal approximation

of the corresponding output should be computed (monotonicity). Also well defined

computational schemes (e.g. in numerical methods) tend to preserve limits of formal

approximations — we can get the result with an arbitrarily small error if we take the

input data with sufficient precision and iterate long enough.

Thus continuous functions above are good candidates to serve as models of

computable functions. The main paradigm of the domain theory is: ”continuous” is the

right mathematical model for ”computable”. The resulting topological spaces possess a

number of remarkable properties. Especially important for computer science applications

are theorems of fixed points for functions and functors. The existence of canonical fixed

points of continuous functions justifies all recursive definitions of functions. The existence

of canonical fixed points of continuous functors justifies all recursive definitions of types;

in particular, they give the solution of the equation D ∼= [D → D], which is interpreted

as homeomorphism, and [D → D] — as the space of all continuous functions from D to

D in the pointwise topology.
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Chapter 2

Overview of Results

2.1 Overview of Part II

The elementary covariant logical approach to domains is known under the name of in-

formation systems. Under this approach domain elements are thought of as theories in a

logical calculus, and continuous functions are thought of as inference engines, deducing

information about f(x) from information about x.

This approach provides very simple and powerful intuition about domains, thus

making it easier to learn domain theory and to find and motivate new notions and

constructions. Thus, it can be recommended as both didactic and research framework.

A more complicated and less elementary contravariant logical approach to do-

mains uses the ideas of Stone duality. We use Stone duality only as an auxiliary vehicle

in this text.

In Chapter 5 of Part I we introduce the framework of information systems for

algebraic Scott domains. We reformulate the notion of consistency in a more technically

convenient way compared to the standard framework [48].

Part II is structured as follows. In Chapter 6 we explain the intuition be-

hind the generalization of this approach to the case of continuous Scott domains by

R.Hoofman [28]. Based on this intuition we further generalize this approach to domains
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of fixed points of Scott continuous transformations of powersets. We also discuss the sig-

nificance of the algebraic case from the logical point of view — algebraic Scott domains

correspond to the standard logic, while some of the more general classes of domains

result from either Hoofman’s non-reflexive logic or Sazonov’s non-finitary logic.

The subsequent chapters, which represent our earlier results, may be also viewed

as applications of Chapter 6. Chapter 7 studies the notion of subdomain and the domain

of subdomains for the algebraic Scott domains. We show that the closure operations play

an exclusive role in the formation of subdomains, as opposed to finitary retractions or

projections, and that this exclusive role can be explained by the intuition presented in

Chapter 6.

Chapter 8 studies finitary retractions and provides a novel simple criterion for

finitarity. Again, the results can be viewed as an illustration for the intuition of Chap-

ter 6. Some of the results of Chapters 7 and 8 might be known as folklore, as Carl

Gunter suggested to me, since it is quite likely that somebody might have discovered

them independently. However, I was not able to trace any written evidence of that.

2.2 Overview of Part III

This part contains the core results of this Thesis.

Our research program is to develop analogs of classical mathematical structures

(metrics, measures, series, vector spaces, etc.) for domains with Scott topology, with

hope to be able eventually to use methods of classical continuous mathematics over the

spaces of programs.

Our research program is essentially dual to the research program initiated by

Abbas Edalat, who suggested to use domains in order to produce computational models

for classical mathematical structures and thus provide the framework for computations

in such structures [20]. We should point out that these dual research programs share a

lot of technical material.

Chapter 9 studies measure theory on domains. This chapter introduces novel

classes of co-continuous valuations and CC-valuations and builds such valuations for a
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large class of domains.

Chapter 10 studies theory of generalized distances on domains. We discover

that if we would like our generalized distances to be Scott continuous functions and

simultaneously to describe Scott topology via these distances, then the axiom ρ(x, x) = 0

cannot hold. Accordingly, we introduce a new class of generalized distances with values

in interval numbers. We call these distances relaxed metrics and build them here for

some domains.

Chapter 11 introduces a general mechanism of building relaxed metrics from

measure-like structures, and shows how to build relaxed metrics from CC-valuations for

continuous Scott domains.

Chapter 12 generalizes the results of the previous chapter to continuous dcpo’s by

solving the patologies of the behavior of negative information for non-weakly Hausdorff

spaces. The connection between negative information and tolerances is explored.
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Chapter 3

Main Definitions of Domain

Theory

This chapter is rather terse. Its main purpose is to serve as a repository of the main

definitions in this text. The two subsequent chapters give important examples of the

notions given here and provide necessary intuition.

We assume that the reader is familiar with the notions of partially ordered set

(partial order), topological space, and continuous function. In some rare cases we will

use simple categorical notions, but the reader is able to skip them without excessive

harm to the overall comprehension.

3.1 Notation

We use U ⊂ V as an equivalent of U ⊆ V & U 6= V .
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3.2 Domains

3.2.1 Directed Sets

A partially ordered set (poset), (S,v), is directed if ∀x, y ∈ S. ∃z ∈ S. x v z, y v z. In

particular, empty sets are directed.

The notion of directed set should be considered as a generalization of the notion

of increasing sequence, s1 v s2 v . . ..

3.2.2 Directed Complete Partial Orders (DCPO’s)

A poset, (A,v), is a directed complete partial order or dcpo if for any directed S ⊆ A,

the least upper bound tS of S exists in A.

Note that, since the empty set is directed, any dcpo A must have the least

element, which we denote as ⊥ or ⊥A.

Because domains without least elements are also considered lately, differences

in terminology occur at this point. Sometimes what we call directed complete partial

orders is called complete partial orders, and a larger class of partial orders, where only

non-empty directed sets must have least upper bounds and, thus, the least element does

not have to exist, is called directed complete partial orders.

3.2.3 The “Way Below” Relation and Compact (Finite) Ele-

ments

Consider a dcpo (A,v) and x, y ∈ A. We say that x � y (x is way below y) if for any

directed set S ⊆ A, y v tS ⇒ ∃s ∈ S. x v s.

An element x, such that x� x, is called compact or finite.

It is easy to see, that x � y implies x v y, however the inverse relationship

is, in general, much more complicated. For example, it is possible that x � x, but

it is also possible that x < y and x 6� y at the same time. A kind of transitivity,

x′ v x, x� y, y v y′ ⇒ x′ � y′, does hold.
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3.2.4 Continuous and Algebraic DCPO’s

Consider a dcpo (A,v) and K ⊆ A. We say that a dcpo A is a continuous dcpo with

basis K, if for any a ∈ A, the set Ka = {k ∈ K | k � a} is directed and a = tKa. We

call elements of K basic elements.

If a continuous dcpo has a basis consisting only of compact elements, such a

dcpo is called algebraic.

3.2.5 Bounded Completeness and Domains

We say that A is bounded complete if ∀B ⊆ A. (∃a ∈ A. ∀b ∈ B.b v a)⇒ tAB exists.

If an algebraic dcpo is bounded complete, it is called an algebraic Scott domain

or, simply, a Scott domain.

If a continuous dcpo is bounded complete, it is called a continuous Scott do-

main [28].

To be consistent with these definitions, if a dcpo is bounded complete, we call

it a complete Scott domain.

3.2.6 Lattices

If each subset of a partially ordered set A has the least upper bound in A, A is called a

complete lattice.

A complete lattice which is a continuous dcpo is called a continuous lattice.

A complete lattice which is an algebraic dcpo is called an algebraic lattice.

Note that complete lattices are precisely those complete Scott domains, which

have the top element, >. Also note that any subset of a complete Scott domain A also

has the greatest lower bound in A.
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3.3 Scott Topology and Scott Continuous Functions

3.3.1 Aleksandrov and Scott Topologies

Consider dcpo (A,vA) and U ⊆ A. U is Aleksandrov open if ∀x, y ∈ A. x ∈ U, x v

y ⇒ y ∈ U . An Aleksandrov open set U is Scott open if for any directed poset S ⊆ A,

tS ∈ U ⇒ ∃s ∈ S. s ∈ U .

It is easy to see that Aleksandrov open sets and Scott open sets form topologies

which are called, respectively, the Aleksandrov topology and the Scott topology.

3.3.2 Continuous functions

Consider dcpo’s (A,vA) and (B,vB) with the respective Aleksandrov topologies. It it

easy to see that a function f : A → B is (Aleksandrov) continuous iff it is monotonic,

i.e. x vA y ⇒ f(x) vB f(y).

Consider dcpo’s (A,vA) and (B,vB) with the respective Scott topologies. It

it easy to see that a function f : A → B is (Scott) continuous iff it is Aleksandrov

continuous and for any directed poset S ⊆ A, f(tAS) = tB{f(s) | s ∈ S}.

3.4 Functional Spaces

Consider dcpo’s A and B. We define the functional space [A→ B] as the set of all Scott

continuous functions f : A → B with the partial order f v g ⇔ ∀x ∈ A. f(x) vB g(x).

It is easy to check that [A→ B] is a dcpo.

3.5 Retractions, Projections, And Their Pairs

Consider dcpo A and its Scott continuous transformation, f : A→ A. If f = f ◦ f , then

f is called a retraction of A. If f is such a retraction and f v idA, then f is called a

projection of A (idA is the identity transformation x 7→ x of A).

Consider dcpo’s A and B and a pair of Scott continuous functions, i : B → A

and j : A→ B, such that j ◦i = idB . Then it is easy to check that r = i◦j is a retraction
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of A. In such a situation we call i an embedding of B into A, j a retraction of A onto

B, and 〈i, j〉 an embedding-retraction pair (or simply, a retraction pair). Sometimes, the

whole pair is called a retraction of A onto B.

If r is also a projection, then the terms projection onto, and embedding-projection

pair (or simply, projection pair) are used in the corresponding situations.
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Chapter 4

Interval Numbers

In this chapter we will look at several important domains, including interval numbers,

which form the basis for correct approximate computations with real numbers.

4.1 Vertical Segments and Rays of Real Line

All domains considered in this section are linearly ordered. We call all linearly ordered

domains vertical domains.

A vertical segment of a real line, [A, B], A < B, with its natural order, v=≤,

is a continuous lattice. So is a vertical ray [A, +∞] and the whole real line [−∞, +∞]

with the same order.

Note that the last two spaces must contain +∞ for directed completeness, and

that the last space must also contain −∞, because all domains have the least element.

We will call these domains the domains of lower estimates for reasons, which

will become apparent in the next section. We denote these domains as R+ or R+
[A, B].

We can also consider a vertical segment of a real line [A, B] with the inverse

order, v=≥. We can also consider vertical rays [A, +∞], [−∞, A] and the whole line

[−∞, +∞] with the same order.

We will call these continuous lattices the domains of upper estimates. We denote
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these domains with the inverse order as R− or R−
[A, B].

Note that when we talk about R+
[A, B] or R−

[A, B], the cases of A = −∞ and/or

B = +∞ are included.

4.1.1 The “Way Below” Relation

One can easily see that ⊥R+ = A and ⊥R− = B.

It is also easy to see that given a, b ∈ [A, B], a �R+ b iff a = ⊥R+ or a < b.

Similarly, a�R− b iff a = ⊥R− or a > b.

This allows one to understand, why these domains are continuous but not alge-

braic.

Any subset K, dense in [A, B] in the traditional sense, can be taken as a basis.

4.1.2 Scott Topology

Consider the domain R+. Its Scott open sets are the empty set, the whole space R+,

and semi-intervals or open rays (a, B], a > A.

For the domain R−, the Scott open sets are the empty set, the whole space R−,

and semi-intervals or open rays [A, b), b < B.

4.2 Interval Numbers

In this section we define the domain of interval numbers belonging to [A, B], where the

cases of A = −∞ and/or B = +∞ are included. This domain will consist of segments

[a, b], where A ≤ a ≤ b ≤ B. We denote this domain as RI or RI
[A, B].

Informally speaking, the segment [a, b] is interpreted as a partially defined num-

ber x, about which it is known that

a ≤ x ≤ b.

If x = [a, b], we call a a lower bound or lower estimate of x, and b an upper bound or

upper estimate of x.
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We can consider a product domain R+ ×R− with coordinate-wise order. Then

RI can be defined as a subset of R+ × R−, obtained by by elimination of pairs 〈a, b〉,

such that a > b, from R+ ×R−. RI inherits its partial order from R+ ×R−.

More specifically, if interval [c, d] is within interval [a, b], that is a ≤ c ≤ d ≤ b,

than [c, d] gives more information about a number, than [a, b]. In such a case, we say

that [a, b] approximates [c, d], and write [a, b] vRI [c, d].

as cs ds bs
Consider the case, where A = 0 and B is finite. Interval numbers [x, y] can be

thought of as a triangle on the plane.
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4.2.1 The “Way Below” Relation

One can easily see that ⊥RI

= [A, B].

It also easy to see that [a, b] � [c, d] iff either a = A and b = B, or a = c = A

and b > d, or b = d = B and a < c, or a < c and b > d.

It is easy to see that RI is a continuous Scott domain. Consider any set Q, dense

in [A, B] in the traditional sense, and take elements [A, b], [a, B], and [a, b], such that

a < b and a, b ∈ Q, as a basis K ⊆ RI .

4.2.2 Scott topology

We consider the basis K built above and build the base of Scott topology.

For segments [A, b] ∈ K take sets V A
b = {[x, y] | A ≤ x ≤ y < b}. For segments

[a, B] ∈ K take sets V B
a = {[x, y] | a < x ≤ y ≤ B}. For segments [a, b] ∈ K take sets

Va,b = {[x, y] | a < x ≤ y < b}.

Sets V A
b , V B

a , and Va,b form the base of Scott topology.
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Chapter 5

Algebraic Information Systems

and Domains

This chapter presents the approach of information systems in the case of algebraic Scott

domains as can be found, e.g. in [48, 35, 36].

The algebraic information systems and domains described in this chapter reflect

the standard notions of inference and theories in traditional formal theories.

5.1 Information Systems and Domains

The approach of information systems describes an approximation domain as a set of

theories in a logical calculus. There are two ways to follow this approach. One could

consider a given approximation domain, which obeys certain specific axioms, and then

try to build a logical calculus such that its theories form an isomorphic domain. This

approach is very useful, when one needs to investigate which class of domains is covered

by a specific variant of information systems, or when one starts with a given domain to

begin with.

However, for didactic purposes, a different approach has proven much more

valuable. This approach was used in the first key paper on information systems by Dana
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Scott [48] and works as follows. We presume that there is some approximation domain

on the background, but we do not specify it precisely. Then, having this hypothetical

domain in mind, we reason about the desired properties of our logical systems and impose

appropriate axioms describing the behavior of these systems. Then we define domains as

sets of theories and establish their properties as theorems rather than postulating them

as axioms.

5.1.1 UNKNOWN as a Truth Value

An information system is a logical calculus of elementary statements and their finite

conjuctions. These elementary statements and finite conjunctions should be viewed as

continuous predicates of a special kind on the elements of the domain in question. These

predicates map domains elements to a two-element set of truth values, however these

truth values are not ordinary true and false, but true and unknown. This crucial

feature is usually not emphasized enough, but one needs to keep it in mind.

The reason for this distinction is that we view a domain element, x, as a dynamic

object, about which only some of the information is known at any given time of the

computational process, but which later can be supplemented with more information,

and thus replaced with y, x v y. The information, which was unknown about x,

can become true about y. This dynamic process is, however, viewed as monotonic with

respect to time — once a piece of information becomes true about an element, it remains

this way further on.

It is possible to talk about false pieces of information about x — these are such

pieces of information which are not true about any y, such that x v y, that is, the pieces

which cannot become true about x during its arbitrary monotonic evolution. The false

truth values will be treated via consistency mechanism, however they will always remain

auxiliary, and usually can be easily eliminated from the scene if necessary, while true

and unknown truth values are essential.
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5.1.2 Example: Formal Theories

The most natural example one should keep in mind is any traditional formal theory,

where elementary statements are all formulas, and the domain in question is the domain

of all theories ordered by ordinary set-theoretic inclusion.

If a statement belongs to a theory, we will say that it is true in (or, if you wish,

“about”) this theory, otherwise it is unknown in this theory. If the theory cannot be

refined to a larger non-contradictory theory to include a specific statement, we might

wish to say that this statement is false in (“about”) this theory.

In the traditional formal theories any deduction is thought of as a formal text

of finite length. Hence any entailment of a statement or a contradiction from a set of

statements is made on the basis of a finite subset of this set. This finitarity property will

be reflected in the definitions below.

5.1.3 Consistency and Entailment

Let us denote the set of elementary statements as D, and the set of all its finite subsets

as Pfin(D). We interpret a finite subset, u ⊆ D, u = {d1, · · · , dn}, as a finite conjuction

of statements d1, · · · , dn.

Keeping the hypothetical approximation domain at the background, we would

like to call a finite conjuction, u, of elementary statements consistent, if there is a domain

element, x, about which all statements of u are true.

It is traditional to assume that ∅ is consistent, that is, that the domain in

question is non-empty [48]. We do follow this tradition here. It is also traditional to

assume that any single elementary statement is true about some domain element, that

is, {d} is consistent for any elementary statement d. This means that one considers

contradictory elementary statements to be “junk” and wants to exclude them from an

information system. We would like to depart from this convention, as it seems to gain

nothing, and makes it more difficult to talk about some natural examples, like the one

considered in the previous subsection, and also makes it impossible to talk about effective

structures on domains in full generality (the point of view, advocated, in particular, by
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V.Yu.Sazonov; our style of information system is, in fact, intermediate between the

traditional one and the style of Sazonov [43] and seems to be the most convenient).

We would like to say, that a finite conjuction, u, of elementary statements entails

an elementary statement, d, if whenever u is true about a domain element, x, statement

d is also true about x.

Again, it is traditional to consider only consistent conjuctions, u, in the context

of entailment. However, it is much more convenient to assume that a conjuction, which is

not consistent, entails everything. It is technically convenient to introduce a special false

statement, ∇, which entails everything and follows from all inconsistent conjunctions.

Taking all this into account, the following definition becomes quite natural.

Definition 5.1.1 The tuple A = (DA,∇A,`A), where DA is a set of distinctive tokens

(elementary statements), ∇A ∈ DA (the false statement), `A⊆ Pfin(DA) × Pfin(DA)

(the entailment relation) is called an algebraic information system if

1. ∅ 6`A {∇A} (non-degeneracy; a calculus must admit at least one non-contradictory

theory);

2. ∀u, v ∈ Pfin(DA). v ⊆ u ⇒ u `A v (reflexivity of entailment and conjunction

elimination);

3. ∀u, v1, . . . , vn, w ∈ Pfin(DA). u `A v1, . . . , u `A vn, v1 ∪ . . . ∪ vn `A w ⇒ u `A w

(transitivity of entailment and conjunction introduction);

4. ∀u ∈ Pfin(DA). {∇A} `A u (contradiction entails everything).

The equivalence between this and the classical definition of information system

will be shown in Subsection 5.1.7.

5.1.4 Theories as Domain Elements

Definition 5.1.2 Domain |A| associated with an algebraic information system A is the

set of theories,

{x ⊆ DA |
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1. u ⊆ x, u `A v ⇒ v ⊆ x (x is deductively closed);

2. ∇A 6∈ x (deductively closed x is consistent) }.

Informally, we will say that if d ∈ x, then d is true about x, otherwise d is

unknown about x.

5.1.5 Properties of Domains

Assume that algebraic information system A is given. Domain |A| is partially ordered

by set-theoretical inclusion, vA=⊆DA
. We study the properties of this order.

5.1.5.1 Deductive Closure and the Least Element

Definition 5.1.3 Subset x ⊆ DA is called (finitely) consistent, if for any finite u ⊆ x,

u 6`A {∇A}.

Definition 5.1.4 Given subset x ⊆ DA, we call subset x ⊆ DA, x = {d ∈ DA | there is

finite u ⊆ x, such that u `A {d}}, the deductive closure of x.

Lemma 5.1.1 If subset x ⊆ DA is consistent, then x is a domain element.

Proof. This simple proof is still quite instructive, so we go through it here.

First of all, we want to show that x is deductively closed, that is if u ⊆ x and u `A v

then v ⊆ x.

Formula u `A v implies finiteness of u and v, hence consider u = {d1, . . . , dn}.

By definition of x, there are u1, . . . , un ⊆ x, such that u1 `A {d1}, . . . , un `A {dn}.

Consider u′ = u1 ∪ . . .∪ un. Then, combining the rule of conjuction elimination and the

rule of transitivity, we obtain u′ `A {d1}, . . . , u′ `A {dn}, applying the same combination

of rules in their conjuction introduction and reflexivity incarnations once again, we obtain

u′ `A u, applying transitivity once again we obtain u′ `A v, and from this and u′ ⊆ x

one concludes that v ⊆ x.

Consistency follows straightforwardly from the two previous definitions. 2

Lemma 5.1.2 x ⊆ y ⇒ x ⊆ y.
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Lemma 5.1.3 Since ∅ is consistent, ⊥A = ∅ is the least domain element.

5.1.5.2 Directed Completeness

Lemma 5.1.4 Domain |A| associated with an algebraic information system A is directed

complete.

Proof. Consider a directed S ⊆ |A|. For the case of S = ∅, Lemma 5.1.3

establishes the the existence of ⊥A = t∅.

Assume that S = {si | i ∈ I} is a non-empty directed set of elements of domain

|A|. Let us establish that
⋃

i∈I si is an element of |A|. From this it would be easy to see

that ti∈Isi =
⋃

i∈I si.

First, establish the deductive closeness of
⋃

i∈I si. Assume that u = {d1, . . . , dn} ⊆⋃
i∈I si. Then d1 ∈ si1 , . . . , dn ∈ sin

. By directness of (si, i ∈ I), there is such i ∈ I,

that si1 ⊆ si, . . . , sin ⊆ si. Then u ⊆ si, and by deductive closeness of si, if u `A v, then

v ⊆ si. Hence if u `A v, then v ⊆
⋃

i∈I si.

Consistency is trivial. 2

5.1.5.3 “Way Below” Relation and Algebraicity

Lemma 5.1.5 Given an algebraic information system, A, an element, x, of associated

domain |A| is compact if and only if there is a finite set, u ⊆ DA, such that x = u.

Proof. Assume, that x = {d1, . . . , dn} and that x v tS, where S is a directed

set. By the proof of Lemma 5.1.4, tS =
⋃

s∈S s, hence, since d1, . . . , dn ∈ x, there are

s1, ..., sn ∈ S, such that d1 ∈ s1, . . . , dn ∈ sn. Hence, by directness of S, there is s ∈ S,

such that d1 ∈ s, . . . , dn ∈ s. Hence, by the deductive closeness of s, x ⊆ s, and x v s.

Conversely, assume that x cannot be represented as a deductive closure of its

finite subset. Then consider set U = {u | u ⊆ x, u finite}. It is easy to see, that

S = {u | u ∈ U} is a directed set, and that x = tS, but for no u ∈ U , x v u, hence x is

not compact. 2

The second part of the proof of the previous Lemma implies that the set of

compact elements characterized there possesses the properties of a basis of dcpo and,
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hence, the following Lemma holds.

Lemma 5.1.6 Domain |A| associated with algebraic information system A is an alge-

braic dcpo.

5.1.5.4 Bounded Completeness

Lemma 5.1.7 Domain |A| associated with algebraic information system A is bounded

complete.

Proof. Consider Y ⊆ |A|, such that there is x ∈ |A|, such that for all y ∈ Y ,

y v x. Then
⋃

y∈Y y is a consistent set, and
⋃

y∈Y y is the desired least upper bound of

Y . 2

5.1.5.5 Algebraic Scott Domains

The discource of this section can be summarized by the following Theorem.

Theorem 5.1.1 The domain |A| associated with algebraic information system A is an

algebraic Scott domain.

5.1.6 Representing Algebraic Scott Domains

Here we show that algebraic information systems describe exactly algebraic Scott do-

mains.

Theorem 5.1.2 For any algebraic Scott domain (X,vX), there is an algebraic infor-

mation system A, such that the partial order (|A|,vA) is isomorphic to partial order

(X,vX).

Proof. Denote the set of compact elements of X as K. Take DA = K ∪ {∇A},

where ∇A is a new token. For finite subsets u, v ⊆ DA, we say that

u `A v if

1. either u is unbounded subset of X, or ∇A ∈ u;
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2. or u has an upper bound in X, and for any k ∈ v, k vX tXu.

First, we must prove that A is an algebraic information system. It is a simple

proof, we only show transitivity axiom here, which is only non-trivial if u has an upper

bound in X. Then assumption, that u `A v1, . . . , u `A vn, means that any element k of

any of these vi’s is less or equal to tXu. In turn, v1 ∪ . . . ∪ vn `A w, implies that all

elements of w are under the least upper bound of all those k’s. But tXu is (some) upper

bound of those k’s, hence all elements of w are under tXu.

Now we have to establish an order-preserving isomorphism between X and |A|.

With every x ∈ X we associate Kx = {k ∈ K | k v x}. Now we are going to prove that

all Kx are elements of |A|, and every element of |A| equals to Kx for some x ∈ X. Then,

due to the fact that x v y ⇔ Kx ⊆ Ky, the relation x ↔ Kx would yield the necessary

isomorphism.

It is easy to establish that Kx is an element, by using the directness of Kx.

In the opposite direction, consider S ⊆ K, which is an element of |A|. First of

all, let us show that S is directed. By consistency of S any finite u ⊆ S is bounded.

By bounded completeness of X, there is tXu. Then, from the directness of KtXu, we

immediately obtain the existence of compact k ∈ KtXu, which is an upper bound of

u (of course, this immediately implies k = tXu, i.e. the least upper bound of a finite

bounded set of compact elements is compact). By definition of `A, u `A {k}. Hence,

the deductive closeness of S implies that S is directed.

Now, using the fact that X is directed complete, consider x ∈ X, such that

x = tXS. Let us prove that S = Kx. The only non-trivial direction is to prove Kx ⊆ S.

Consider compact element k ∈ Kx. The definition of “way-below” relation and of element

x, together with the facts k � k and k v x, imply that there is k′ ∈ S, such that k v k′.

Then deductive closeness of S implies k ∈ S. 2
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5.1.7 Equivalence between Classical Information Systems and

Our Definition

Definition 5.1.5 A = (D′
A, Con′A,`′A), where D′

A is a set of distinctive tokens (as-

sertions), Con′A ⊆ Pfin(D′
A) (the consistent finite conjunctions of assertions), `′A⊆

Con′A ×D′
A (the entailment relation), is called a classical information system if

(i) ∅ ∈ Con′A (non-degeneracy; empty domains are barred);

(ii) ∀d ∈ D′
A.{d} ∈ Con′A (no “junk”);

(iii) ∀u ⊆ v ∈ Con′A.u ∈ Con′A;

(iv) ∀d ∈ u ∈ Con′A.u `′A d (reflexivity of entailment);

(v) ∀u ∈ Con′A, d ∈ D′
A.u `′A d⇒ u∪ {d} ∈ Con′A (entailment preserves

consistency);

(vi) ∀u, v ∈ Con′A, d ∈ D′
A.(∀d′ ∈ v.u `′A d′), v `′A d ⇒ u `′A d (transi-

tivity of entailment).

The domain |A| associated with a classical information system A is defined as a

set of x ∈ D′
A satisfying the consistency condition, ∀u ⊆ x. u is finite ⇒ u ∈ Con′A, and

the condition of deductive closeness, ∀u ⊆ x, d ∈ D′
A. u `′A d ⇒ d ∈ x. Of course, v|A|

is defined to equal ⊆.

All such domains are algebraic Scott domains, and for any algebraic Scott domain

X it is possible to build a classical information system A, such that |A| is isomorphic to

X. So everything is very similar to our version of algebraic information systems.

Now we are going to establish an even stronger equivalence between these two

versions. We are going to build two translations as follows. Given an algebraic informa-

tion system A = (DA,∇A,`A), we will build a classical information system, B = C(A),

and given a classical information system, B = (D′
B , Con′B ,`′B), we will build an algebraic

information system A = S(B), such that the following properties hold.

For domains, |C(A)| = |A| and |S(B)| = |B|, where the set equalities take place,

as opposed to mere isomorphisms. For information systems, C(S(B)) = B and if we

consider Ac = S(C(A)), then DAc = DA \ {d ∈ DA | d `A ∇A&d 6= ∇A} and `Ac is
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obtained by restricting `A on Pfin(DAc
) × Pfin(DAc

). Basically, the only disturbance

that S ◦ C cannot avoid is that other “junk” tokens equivalent to ∇A die.

The translations are defined by the following formulas.

D′
C(A) = {d ∈ DA | {d} 6`A ∇A}; Con′C(A) = {u ∈ Pfin(DA) | u 6`A ∇A}; if

u ∈ Con′C(A), d ∈ D′
C(A), then u `′C(A) d⇔ u `A {d}.

DS(B) = D′
B ∪ {∇S(B)} (under assumption ∇S(B) 6∈ D′

B). Consider u, v ∈

Pfin(DS(B)), d1, . . . , dn ∈ DS(B). If u 6∈ Con′A then u `S(B) v. If u ∈ Con′A then

u `S(B) {d1, . . . , dn} ⇔ u `′B d1, . . . , u `′B dn.

It is easy to check that if A is an algebraic information system and B is a classical

information system, then C(A) is a classical information system, S(B) is an algebraic

information system, and our claims above hold.

5.2 Approximable Mappings and Continuous Func-

tions

Information systems allow to think about domain elements as theories. Likewise, this

approach allows to think about Scott continuous functions as special inference engines,

which infer information about output, f(x), from information about input, x.

Unfortunately, these input-output inference engines are called approximable map-

pings for their property to approximate one another. While this is an important property,

Scott continuous functions thought of as graphs, or, in fact, any functions to domains

approximate one another. Moreover, the “mappings” in question are not even functions.

However, at this point of the development of the field one does not have much of a choice,

but to follow the accepted terminology.

The following definition takes into account the intuition, that consistent informa-

tion about input should produce consistent information about output, and that “native”

inference relations of input and output domains can be used by an input-output inference

engine.

Definition 5.2.1 Given two information systems, A and B, relation f ⊆ Pfin(DA) ×
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Pfin(DB) is called an input-output inference relation or an approximable mapping be-

tween A and B, if the following axioms hold:

1. ∅f∅ (non-triviliality; minimalistic version of uf∅);

2. ∀u ∈ Pfin(DA). u 6`A {∇A} ⇒ ¬(uf{∇B}) (preservation of consistency);

3. {∇A}f{∇B} (inconsistency about an input allows to infer anything about the

corresponding output);

4. ∀u ∈ Pfin(DA), v1, . . . , vn ∈ Pfin(DB). ufv1, . . . ufvn ⇒ uf(v1 ∪ . . . ∪ vn) (accu-

mulation of output information, i.e. conjunction introduction);

5. ∀u′, u ∈ Pfin(DA), v, v′ ∈ Pfin(DB). u′ `A u, ufv, v `B v′ ⇒ u′fv′ (transitivity

with “native” inference relations in A and B).

5.2.1 Scott Continuous Functions

An approximable mapping, f , between information systems A and B naturally gives rise

to a function, |f | : |A| → |B|, where |f |(x) is computed by inferring all information from

x using f .

We will see that |f | is always Scott continuous, and that for any Scott continuous

function g : |A| → |B| one can find an approximable mapping ĝ between A and B, such

that |ĝ| = g, |̂f | = f . Together with the results about identity maps and composition

this yields an equivalence between the category of algebraic information systems and ap-

proximable mappings and the category of algebraic Scott domains and Scott continuous

functions.

Definition 5.2.2 Given an approximable mapping f between A and B, define the as-

sociated function |f | : |A| → |B| by formula |f |(x) = {d ∈ DB | ∃u ⊆ x. uf{d}}.

Theorem 5.2.1 The function |f | is correctly defined and Scott continuous.

Proof. First, of all, to prove correctness we need to show, that |f |(x) ∈ |B|.

We need to show deductive closeness and consistency of |f |(x). Assume, that v =
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{d1, . . . , dn} ⊆ |f |(x). Then there are u1, . . . , un ⊆ x, such that u1f{d1}, . . . , unf{dn}.

Then, by axioms of information systems and approximable mappings, ufv, where u =

u1 ∪ . . . ∪ un. Hence, if v `B v′, by axioms of approximable mapping ufv′, from which

it is easy to infer that v′ ⊆ |f |(x). Likewise, if ∇B would belong to |f |(x), there would

be some u ⊆ x, uf{∇B}, contradicting the combination of consistency of x and, hence,

u, and the preservation of consistency axiom for f .

Monotonicity of |f | is obvious. Given a directed set S ⊆ |A|, we show that

|f |(tAS) =
⋃

s∈S |f |(s), thus establishing preservation of least upper bounds of directed

sets and Scott continuity. The less trivial part is to show |f |(tAS) ⊆
⋃

s∈S |f |(s). Recall

that tAS =
⋃

s∈S s. Assume, that d ∈ |f |(
⋃

s∈S s), that is there is v = {d1, . . . , dn} ∈⋃
s∈S s, such that vf{d}. Then there are s1, . . . , sn ∈ S, such that d1 ∈ s1, . . . , dn ∈ sn.

Then, by directness of S, we can find such s ∈ S, that v ⊆ s. Hence d ∈ |f |(s) and

belongs to the union in question. 2

Definition 5.2.3 Given a Scott continuous function g : |A| → |B|, define the associated

relation ĝ ⊆ Pfin(DA)× Pfin(DB) by formula uĝv ⇔ ∀x ∈ |A|. u ⊆ x⇒ v ⊆ g(x).

It is easy to check that ĝ is an approximable mapping.

If u ∈ Pfin(DA) is consistent, then uĝv ⇔ v ⊆ g(u), otherwise uĝv for all

v ∈ Pfin(DB).

This and the Scott continuity of g allow to establish easily, that |ĝ| = g, |̂f | = f .

Moreover, f ⊆ g iff |f | v[A→B] |g|.

5.2.2 Identity and Composition

It is easy to see that | `A | = idA, where ∀x ∈ |A|. idA(x) = x.

Define the composition of approximable mappings f ⊆ Pfin(DA) × Pfin(DB)

and g ⊆ Pfin(DB) × Pfin(DC) as g ◦ f = h ⊆ Pfin(DA) × Pfin(DC), such that uhw ⇔

∃v ∈ Pfin(DB). ufv, vgw.

One can think of g ◦ f as an input-output inference engine obtained by hooking

the input of engine g to the output of engine f :

(
← g ← f ←

)
.
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It is easy to check that |g ◦ f | = |g| ◦ |f |.

5.3 Functional Spaces

Consider algebraic information systems A and B. We are going to define an information

system, [A → B], such that |[A → B]| would consist precisely of all approximable

mappings between A and B.

Since there is an isomorphism between approximable mappings and Scott con-

tinuous functions, and since the set-theoretical inclusion of approximable mappings cor-

responds to the partial order on the domain of Scott continuous functions, [|A| → |B|],

we will use the information system [A→ B] to represent this functional space.

Take D[A→B] = Pfin(DA)× Pfin(DB). Take ∇[A→B] = 〈∅, {∇B}〉.

Say, that {〈u1, v1〉, . . . , 〈un, vn〉} `[A→B] {〈u′1, v′1〉, . . . , 〈u′m, v′m〉}, where n, m ≥

0, if

1. for any i ∈ {1, . . . ,m},
⋃
{j∈{1,...,n} | u′i`Auj} vj `B v′i or u′i `A ∇A; or

2. ∃I ⊆ {1, . . . , n}.
⋃

i∈I ui 6`A ∇A,
⋃

i∈I vi `B ∇B .

We leave the necessary correctness checks to the reader.

5.4 Effective Domains and Computations

We say that an algebraic information system A is effective, if DA and `A are recursively

enumerable. The corresponding domain |A| is called effective too.

An important example is produced by the effective domain of arithmetic theo-

ries in any of the usual systems of arithmetic. This example shows why our degree of

generality is the right one.

Usually people give a more restrictive definition, which is equivalent to DA and

`A being recursive. One of the reasons for this is the inconvenience of the definition of

a classical information system. Indeed, if A is an effective algebraic information system,

then Con′C(A) is co-recursively enumerable, and `′C(A) has to be defined effectively on a
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co-recursively enumerable domain of definition, which is not a trivial undertaking, and,

in any case, the result would be awkward.

An element x ∈ |A| is called computable if it is a recursively enumerable set.

Note that this condition is equivalent to the recursive enumerability of Kx under our

construction from Section 5.1.6.

If f is a computable element of a functional domain, |[A → B]|, we call it a

computable function. Observe that computable functions map computable elements to

computable elements and, moreover, transform a recursive enumeration of x into the

recursive enumeration of |f |(x).

We should note here that the problems of the correctness of definition for effective

domains and computable elements are not decidable in general. For example, it is often

impossible to develop a procedure deciding whether a given effective domain is not empty,

or whether a given recursive enumeration of a computable element does not contain ∇.

An implementation of a computable element is some computational device,

which recursively enumerates the tokens of this element. The issues of more effective im-

plementation of some classes of computable elements (defined by some restricted classes

of formulas) are very important from the practical viewpoint and constitute Problem A.
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Part II

Logic of Fixed Points for

Domains
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Chapter 6

Non-reflexive Logics for

Non-algebraic Domains

In the previous chapter we saw that information systems based on the ordinary logic

correspond to algebraic Scott domains. Hence, in order to generalize the logical approach

to larger classes of dcpo’s, one has to modify the logic of inference and/or the notion of

theory.

In this chapter we concern ourselves with bounded complete dcpo’s. Some

progress for some classes of non-bounded complete spaces was achieved by Abramsky [1].

This chapter develops our ideas from [8, 9] and Appendix 1 of [10]

6.1 Non-reflexive Logic

The seminal paper [28] by R.Hoofman generalized the logical approach to non-algebraic

continuous domains. Hoofman replaced the ordinary relexivity rule, A ` A, with a

weaker property of inverse modus ponens: A ` C ⇒ ∃B. A ` B,B ` C. His paper is a

well-written one, but at the same time the actual and simple reasons for his construction

to work are hidden in its later sections. Thus, the average reader gets an impression that

it is a miracle construction, and the real intuition behind this paper is lost.

32



In particular, another important feature, which allows to exploit non-relexivity,

is underemphasized. This feature is the change in the notion of a theory (i.e. domain

element). A theory, x, is traditionally a consistent, deductively closed set of statements.

Hoofman adds an additional requirement of inverse deductive closeness, which is trivial

for a reflexive situation: ∀d ∈ DA.d ∈ x⇒ ∃u ⊆fin x.u `A d.

We will soon see, that this feature is essential for his approach, while the inverse

modus ponens rule is important only in order to maintain continuity of the resulting

domain. In fact, we generalize the results of [28] to arbitrary spaces of fixed points

of Scott continuous transformations of algebraic Scott domains, by omitting both the

inverse and the standard rule of modus ponens.

6.1.1 Correspondence between Properties of Scott Continuous

Functions and Inference Rules

Scott continuous functions are equivalent to input-output inference engines (approx-

imable mappings). In particular, given an algebraic information system A, Scott contin-

uous transformations |f | of the corresponding domain |A| are equivalent to the gener-

alized inferences f ⊆ Pfin(DA) × Pfin(DA), which are transitive with the standard `A

and respect consistency and inconsistency.

6.1.1.1 Reflexivity

Consider the reflexive f , v ⊆ u ⇒ ufv. Since ufv, v `A w ⇒ ufw, if f is reflexive,

then from ∀u ∈ Pfin(DA). ufu we can infer `A⊆ f . Hence if f is reflexive, then

∀x ∈ |A|. x vA |f |(x).

Conversely, ∀x ∈ |A|. x vA |f |(x) implies that f is reflexive.

6.1.1.2 Transitivity

It is easy to see, that ∀u, v, w ∈ Pfin(DA). ufv, vfw ⇒ ufw is equivalent to the condition

|f | ◦ |f | v[A→A] |f |.
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6.1.1.3 Inverse Transitivity

It is easy to see, that the Hoofman rule of inverse transitivity, ∀u, w ∈ Pfin(DA). ufw ⇒

∃v ∈ Pfin(DA). ufv, vfw is equivalent to |f | v[A→A] |f | ◦ |f |.

6.1.1.4 Retractions

The previous two paragraphs imply that f is transitive and inversely transtive if and

only if |f | is a retraction: |f | = |f | ◦ |f |.

6.1.1.5 Inverse Reflexivity

The rule ∀x ∈ |A|. |f |(x) vA x is equivalent to the following rule of “inverse reflexivity”:

ufv ⇒ u ` v, which will be transformed into ufv ⇒ v ⊆ u in some simple cases.

6.1.1.6 Closures and Projections

It is easy to see, that reflexivity implies inverse transitivity, and that inverse reflexivity

implies transitivity.

Hence, the combination of reflexivity and transitivity yields precisely closures

(such retractions |f |, that x vA |f |(x)), and the combination of inverse reflexivity and

inverse transitivity yields precisely projections (such retractions |f |, that |f |(x) vA x).

6.1.2 Fixed Points as Theories

Consider the definition of |f |: |f |(x) = {d | ∃u ∈ x. uf{d}}. So |f |(x) consists of tokens

which are inferrable from x via inference engine f .

Hence, the deductive closeness of x with respect to inference f , ∀u, v ∈ Pfin(DA).

u ∈ x, ufv ⇒ v ∈ x is equivalent to |f |(x) vA x.

Similarly, the inverse deductive closeness of x with respect to inference f , namely

∀v ∈ Pfin(DA). v ∈ x⇒ ∃u ∈ Pfin(DA). u ∈ x, ufv, is equivalent to x v |f |(x).

Hence, together the deductive closeness and the inverse deductive closeness of x

with respect to inference f is equivalent to x being a fixed point of |f |: |f |(x) = x.
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6.1.3 Domains of Fixed Points

The previous paragraph suggests the following procedure. Consider an algebraic infor-

mation system A and replace its entailment relation with an approximable mapping f

between A and A.

Then replace the notion of theory with the consistent subset x ⊆ DA, such that

x is deductively closed and inversely deductively closed with respect to f . The result is

the domain |Af | of fixed points of contionuous transformation |f |, |Af | = Fix(f) ⊆ |A|.

We can call |Af | a fixed-point subdomain of |A|.

However, we want to introduce a more general notion of a fixed-point subdomain.

6.1.4 Adding the Top Element

Consider an algebraic information system A = (DA,∇A,`A) and the corresponding

domain |A|. Consider an element ∇A> 6∈ DA and define the algebraic information

system A> as follows.

Take DA> = DA

⋃
{∇A>}. Of course, we take ∇A> as the ∇ of the new system.

We set u `A> v iff either u `A v or ∇A> ∈ u.

Then |A>| = |A|
⋃
{>}, where > = DA> = {∇A} is the new top element.

6.1.5 General Notion of Fixed-Point Subdomain

In this chapter we consider approximable mappings as generalized entailment relations.

Sometimes we would like an approximable mapping f to entail the contradiction from

some of finite conjuctions of statements from DA, noncontradictory under `A. In order

to formalize such a situation we have to consider approximable mappings f from A to

A>.

The general notion of a fixed-point subdomain of A is the set of fixed points of

Scott continuous function |f | : |A| → |A>|, Fix(f) = {x ∈ A | x = |f |(x)}. Equivalently,

one can consider fixed points of Scott continuous transformations |f | of domain A>, such

that |f |(>) = >.
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If, for the sake of tradition, one wants to impose the requirement that the sub-

domains are non-empty, one has to add the requirement |f |(⊥) 6= >.

6.1.6 Application: Removing the Compact Top Element

Assume that an algebraic Scott domain |B| has the compact top element >B 6= ⊥B (in

particular, |A>| has the compact top element, {∇A>}). Then consider |f | : |B| → |B>|,

such that |f |(>B) = >B> and |f |(x) = x for all other x ∈ |B|.

Then Fix(f) = B \ {>B}.

The compactness of >B is important, since a Scott continuous function on an

algebraic Scott domain is completly defined by its values on compact elements.

In terms of entailment, ufv iff either u `B v or >B ⊆ u. It is easy to see, that

since >B 6= ⊥B , the resulting system B 6> = (DB ,∇B , f
⋂

(Pfin(DB)× Pfin(DB))) is an

algebraic information system, and |B 6>| = B \ {>B}.

6.1.7 Powersets and Qualitative Domains

Consider set D, such that ∇A 6∈ D, and define DA = D
⋃
{∇A} and u `m

A v iff v ⊆ u

or ∇A ∈ u. The resulting minimal algebraic information system Am = (DA,∇A,`m
A )

defines the powerset of D as its domain |Am|.

If we consider W ⊂ Pfin(DA), such that ∅ 6∈ W , {∇A} ∈ W , and modify the

previous construction so that u `A v iff v ⊆ u or ∃w ∈ W. w ⊆ u, then we obtain a

qualitative domain (see [28]). We can modify the construction of cutting the compact

top element above to obtain any qualitative domain from the powerset domain.

6.1.8 General Notion of Finitary Information System And Fini-

tary Scott Domain

Consider an algebraic information system A = (DA,∇A,`A) and an approximable map-

ping f from A to A>. We agreed that f describes a fixed-point subdomain of |A|. Observe

that f also describes a fixed-point subdomain of |Am|. Moreover, the sets of fixed points
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of corresponding Scott continuous functions |f | : |A| → |A>| and |f | : |Am| → |Am
> |

coincide.

This leads us to a general definition of what we call a finitary information system

and the definition of the corresponding finitary Scott domain. We will respect the rule

|f |(⊥) 6= > meaning the non-emptyness of the resulting domains. These definitions will

be respectively a streamlined equivalent of Am together with an approximable mapping

f between Am and Am
> and a description of the set of fixed points of the corresponding

function |f |.

Definition 6.1.1 The tuple A = (DA,∇A,`′A), where DA is a set of distinctive tokens

(elementary statements), ∇A ∈ DA (the false statement), `′A⊆ Pfin(DA) × Pfin(DA)

(the entailment relation) is called a finitary information system if

1. ∅ 6`′A {∇A} (non-degeneracy; a calculus must admit at least one non-contradictory

theory);

2. ∅ `′A ∅ (non-triviliality);

3. ∀u, v1, . . . , vn ∈ Pfin(DA). u `′A v1, . . . u `′A vn ⇒ u `′A (v1∪. . .∪vn) (accumulation

of output information);

4. ∀u′, u, v, v′ ∈ Pfin(DA). u′ ⊆ u, u′ `′A v′, v ⊆ v′ ⇒ u `′A v;

5. ∀u, v ∈ Pfin(DA). u `′A {∇A} ⇒ u `′A v;

6. ∀u, v ∈ Pfin(DA). ∇A ∈ u⇒ u `′A v.

Definition 6.1.2 The finitary Scott domain |A| associated with a finitary information

system A is the set of theories,

{x ⊆ DA |

1. u ⊆ x, u `′A v ⇒ v ⊆ x (x is deductively closed);

2. v ⊆ x⇒ ∃u ∈ Pfin(DA). u `′A v, u ⊆ x (x is inversely deductively closed);

3. ∇A 6∈ x (deductively closed x is consistent) }.
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In order to check the correctness of our discourse, one has to consider information

systems Am = (DA,∇A,`m
A ) and the corresponding system Am

> . Given a finitary infor-

mation system A = (DA,∇A,`′A), one should define f ⊆ Pfin(DA)×Pfin(DA

⋃
{∇Am

>
})

via ufv ⇔ u `′A v or ∇A ∈ u and establish that f is an approximable mapping, such

that ¬(∅f{∇Am
>
}). Then given an approximable mapping f between Am and Am

> , such

that ¬(∅f{∇Am
>
}), one should define `′A via u `′A v ⇔ ufv and ∇Am

>
6∈ v and establish

that A = (DA,∇A,`′A) is a finitary information system.

Finally one should observe that we have just defined one-to-one correspondence

between all possible entailment relations in finitary information systems (DA,∇A,`′A)

and all approximable mappings between Am and Am
> , such that ¬(∅f{∇Am

>
}), and that

under that correspondence finitary Scott domains are exactly the sets of fixed points of

the respective functions |f |.

6.1.9 Domains of Fixed-Point Subdomains

In the subsections 6.1.5 and 6.1.8 we defined a finitary information system and the

corresponding finitary Scott domain of fixed points of |f | for any approximable mapping

f , such that ¬(∅f{∇A>}), between any algebraic information system A = (DA,∇A,`A)

and the corresponding system A>.

The approximable mapping f , such that ∅f{∇A>}, corresponding to Scott con-

tinuous function |f |, such that |f |(⊥) = >A> , is the top compact element of the domain

[A→ A>], and, hence, it can be removed by the technique described above, yielding the

algebraic Scott domain |[A→ A>]6>|.

Because these mappings f are in one-to-one correspondence with fixed-point

subdomains of |A|, we can take the domain |[A → A>]6>| as representing fixed-point

subdomains of |A|. Of course, different f might have the same set of fixed points, and

hence the corresponding fixed-point domains will coincide as sets, but their underlying

entailment relations will differ, so they should be considered different subdomains.

Hence we call |[A→ A>]6>| the domain of fixed-point subdomains of |A|.
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6.1.10 Discussion

One should observe that f is not an arbitrary new entailment relation, but is closely

related to the original `A, namely f is transitive with respect to `A due to the axioms

of approximable mappings. This property is responsible for the fact that all elements of

the resulting fixed-point subdomain belong to the original domain.

We can think about a fixed-point subdomain as the result of some elements of

the original domain being destroyed. There are three mechanisms of such a destruction.

An element can lose its deductive closeness or consistency. When these two mechanisms

are involved, we still remain within the realm of reflexive logic and algebraic subdomains

result. This important case is covered in details in Chapter 7.

The third mechanism of destruction of elements of the original domain is the loss

of inverse deductive closeness. When this happens we, in general, go beyond ordinary

reflexive logic. However, there are cases of non-reflexive f ’s, where we still can remain

within the realm of reflexive logic. The price for this is the distortion of the result-

ing subdomain: instead of the proper fixed-point subdomain we only obtain a domain

isomorphic to this fixed-point subdomain. One such case, namely the case of finitary

retractions, is considered in details in Chapter 8.

We could have considered a different definition of a fixed-point subdomain of |A|,

namely any finitary information system determined by arbitrary approximable mapping

f from Am to Am
> , such that Fix(|f |) is a non-empty subset of |A|. Then, however, it

is unlikely that we could form a domain of such subdomains, although I did not try to

prove such a result. Even if we could do so, such domains of subdomains would not have

to be isomorphic for isomorphic domains |A| and |B| if the cardinalities of DA and DB

differ. Hence this alternative definition is unsatisfactory.

6.1.11 Results for Continuous Scott Domains

Now the results on continuous information systems by Hoofman can be easily explained.

He retained transitivity of f and replaced its reflexivity by inverse transitivity. This

resulted in |f | being a retraction.
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It is well known that retractions of continuous lattices are continuous lattices,

and that all continuous lattices can be obtained as retractions of powersets, and these

results can be generalized for continuous Scott domains, since the only thing which

distinguish them from continuous lattices is that continuous Scott domains do not have

to possess the top element.

These facts explain the success of Hoofman’s program for continuous Scott do-

mains.

6.2 Infinitary Logic

In [43] Sazonov and Sviridenko introduced another generalization of logic. They kept

reflexivity and transitivity, but removed the finitarity requirement that an infinite set of

statements x only infers those statements, which the finite subsets u ⊆ x infer.

Their approach describes exactly all bounded complete partial orders. Directed

completeness is equivalent to the following requirement of partial finitarity: a set of

statements x cannot infer the contradiction, unless one of its finite subsets u ⊆ x infers

the contradiction.

Hence partially finitary systems of Sazonov and Sviridenko exactly correspond

to complete Scott domains.

Sazonov and Sviridenko also gave characterizations of some subclasses of com-

plete Scott domains in their system, in particular, they described a class of their logic

corresponding to continuous Scott domains.

6.3 Open Issues

6.3.1 The Class of Finitary Scott Domains

What is the class of domains described as fixed-point domains is an important open

question. It is well known that the set of fixed points of a Scott continuous transformation

of a complete lattice is a complete lattice. It was traditionally thought that the converse
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is also true, namely that any complete lattice can be obtained as a set of fixed points of

a Scott continuous transformation of a sufficiently large powerset. For example, Exercise

18.4.3(ii)(1) on page 491 of the famous textbook on lambda calculus by Barendregt [5]

asks to establish this for the case of countable bases of the respective Scott topologies.

Hence we expected that our approach would allow us to obtain all complete

Scott domains. We thus expected to follow the terminology of continuous information

systems by Hoofman and call the fixed-point information systems developed in this

chapter complete information systems.

However, our analysis of literature and numerous conversations with experts in

the field convinced us that the problem stated in the textbook by Barendregt is, in fact,

open. Our attempts to solve it were, so far, unsuccessful. Hence we opted for the less

committing terminology of finitary information systems and finitary Scott domains.

6.3.2 Important Subclasses

What subclasses of finitary domains will be obtained, if we require f to be transitive or,

more strongly, inversely reflexive? The conjecture is that we still obtain all finitary Scott

domains as sets of fixed points of the corresponding functions |f |.

Transitivity is, of course, a very desirable property of a logical system, so it

is of interest to check whether it restricts generality. These questions come in at least

two flavors: for f defining a continuous transformation of |Am| and for f defining a

continuous transformation of an arbitrary algebraic Scott domain |A|.

6.3.3 Approximable Mappings And Other Issues for Finitary In-

formation Systems

Hoofman successfully introduced the notion of continuous approximable mapping for

continuous information systems based on the fact, that given spaces A and B and their

retractions rA : A → A and rB : B → B, one can build a retraction (A → B) →

(A → B), namely f 7→ rB ◦ f ◦ rA. Scott continuous functions f : A → B, such

that f = rB ◦ f ◦ rA, are in one-to-one correspondence with Scott continuous functions
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Fix(rA)→ Fix(rB).

Unfortunately, no such simple solution seems possible for finitary information

systems. Yet, a satisfactory notion of finitary approximable mapping seems to be neces-

sary for further successful studies of finitary information systems.

There is a possibly simpler variant of this problem if f is required to be transitive.

6.3.4 Possible Translation between Nonreflexive and Nonfinitary

Logics

In [43] Sazonov and Sviridenko gave a translation between their logic and the logic of

Hoofman for continuous Scott domains.

Naturally there is a question whether such a translation is possible for a larger

class of domains.

It also might be of interest to combine the features of nonreflexive and nonfinitary

logic in one system.
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Chapter 7

Subdomains for the Algebraic

Case

This chapter represents our results obtained in 1986-1988 and presented in [7]. With the

introduction of our new version of the definition of algebraic information system and our

ideas in nonreflexive logic the presentation is greatly simplified.

For the duration of this chapter “domain” means algebraic Scott domain, “sub-

domain” means algebraic Scott subdomain, and “information system” means algebraic

information system.

7.1 The Brief History of the Question

In this chapter, we study the question “Which subsets of a domain should be consid-

ered subdomains?” for the domains described by algebraic information systems. One

criterion for a good answer is a requirement that all subdomains of domain |A| should

themselves form a domain, |Sub(A)|. We would also like to be able to solve domain

equations such as |X| ∼= |Sub(X)|+ . . .. It will be shown in the next few pages that the

framework of domains as abstract cpo’s does not provide sufficient hints for the solution,

but information systems do.
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The systematic use of the operation of taking a certain subset of a domain to

form another domain and the systematic consideration of domains, whose elements are

domains, first appear in the mid-’70’s [47, 49]. It is notable that nobody has tried

to consider arbitrary subsets of domain |A| that would satisfy a particular version of

domain axioms, although at the first glance this would seem to be the most intuitive

and general version of a subdomain definition in the framework of domains as abstract

cpo’s. The reason why nobody has considered such a definition is that such arbitrary

subsets might satisfy the domain axioms for random causes, and their collection would

be totally unmanageable; in particular, one cannot hope to form a domain, |Sub(A)|,

with these subsets as elements.

The next idea, which originated by Dana Scott in [47], is to define a subdomain

as a set of fixed points of a retraction belonging to a certain class. There are two problems

here: a) What are the reasons for using retractions? b) What is the appropriate class of

retractions? None of these problems receives a clear answer in the framework of domains

as abstract cpo’s. On the use of retractions Scott writes: “it seems almost an accident

that the idea [to use the retractions] can be applied” (see [47], p.540).

For the algebraic case, Scott suggests using closure operations, that is, retractions

|r|, such that |r| w id. This suggestion can be motivated by the theorem (see [47],

Theorem 5.1) saying that the fixed points of a closure operation [on an algebraic lattice]

form an algebraic lattice. Although this is not true for arbitrary retractions or projections

(i.e. retractions |r|, such that |r| v id), if we consider finitary retractions or projections

(finitary means algebraicity of the set of fixed points), then this argument no longer

favors closure operations.

In the paper entitled “Data Types as Objects” [49], Shamir and Wadge suggest

that to describe the systems of polymorphic types, one should consider data types that

incorporate their own subtypes as elements, and allow an element of a data type to

belong simultaneously to different subtypes of this data type.

Let us briefly present the main features of subtypes in [49]. The subtype |Y | =

{x ∈ |D| | x v y} is associated with each element y of a data type |D|. We can view
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such subtype as the set of fixed points of the (finitary, in the algebraic case) projection

x 7→ x u y. Subtypes are ordered simply by inclusion. Thus, this simple approach

yields the result that |D| ∼= |Sub(D)| for every domain |D|. Each element represents the

subtype of its approximations, and an element x belongs to all subtypes |Y | of |D| that

are represented by y’s, such that x v y.

At the end of the Introduction to [7], we discussed the rather adverse relations

between retraction-based approaches to subtyping ( [47, 49], and this chapter are based

on retractions) and the dominant form of modern theories of typing that deals with

types of intensional objects (the type polymorphism in ML is, probably, the most widely

known example).

7.2 Algebraic Subdomains Correspond to Closures

When we considered this problem in [7], we were using classical information systems.

We wrote: “Let us consider informally, what should we do to an information system A

to obtain a subdomain |B| ⊆ |A|. We would like to destroy some elements of |A|. The

elements are consistent and deductively closed sets of assertions in A. Therefore, some

elements of |A| must lose their consistency or deductive closure to be destroyed. Also

notice, that the loss of deductive closure means intensification of entailment.”

Then we figured out, that inconsistency can be treated as entailment of contra-

diction in A>, and hence the loss of consistency can be also treated as strengthening

of entailment. The need to keep considering separately entailment and consistency in a

number of technical situations, nevertheless, complicated our whole discourse.

With the definition of algebraic information system introduced in this Thesis,

the matters become much simpler.

Definition 7.2.1 We say that for algebraic information systems A and B, domain |B|

is an (algebraic) subdomain of domain |A| if |B| ⊆ |A|.

Lemma 7.2.1 (Contravariance) For algebraic information systems A and B, such

that DA = DB, |B| ⊆ |A| iff `A⊆`B.
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It is easy to see that the case when DA 6= DB does not lead to new domains |B|,

so we do not consider this case further.

Since every algebraic information system is a finitary information system, the

discourse from the previous chapter applies. Namely, we can see that if `A⊆`B , the

approximable mapping f from A to A>, which corresponds to `B , is reflexive.

Since B is an algebraic information system, the restriction of f to A → A

approximable mapping (or its extension to A> → A>) is also transitive, so the cor-

responding restriction or extension of |f | would be a closure. Also the non-triviality

condition |f |(⊥A) 6= >A> holds.

Definition 7.2.2 An approximable mapping f from an algebraic information system A

to the algebraic information system A> is called a generalized non-trivial closure, if

1. ∀u, v ∈fin Pfin(DA). u `A v ⇒ ufv (reflexivity of the restriction on A);

2. ∀u, v, w ∈fin Pfin(DA). ufv, vfw ⇒ ufw (transitivity of the restriction on A);

3. ¬(∅f{∇A>}) (non-triviality);

Lemma 7.2.2 Such generalized non-trivial closures from |[A→ A>]| are in one-to-one

correspodence with algebraic subdomains of |A|. Moreover, for closures f and g and the

corresponding subdomains |F | and |G|, |F | ⊆ |G| iff g ⊆ f .

7.3 A Metatheorem on Reflexive Transitive Closure

We are about to build the domain of algebraic subdomains of an algebraic Scott domain

|A| as an algebraic subdomain of the algebraic Scott domain |[A → A>]|. Our new

setting allows us to do it in a systematic way compared to [7].

Definition 7.3.1 Consider the minimal algebraic information system Am = (DA,∇A,`m
A )

and any binary relation R ⊆ Pfin(DA)× Pfin(DA). Then define the reflexive transitive

closure `R
A⊆ Pfin(DA) × Pfin(DA) as follows. For any u, v ∈ Pfin(DA), we say that
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u `R
A v, if there is a finite sequence v1, . . . , vn ∈ Pfin(DA), such that v = vn and the

following condition holds:

Denote u0 = u and, inductively, ui = ui−1

⋃
vi for all i ∈ {1, . . . , n}. Then for

any i ∈ {1, . . . , n}, we require that either ∇A ∈ ui−1, or vi ⊆ ui−1, or there is u′ ⊆ ui−1,

such that u′Rvi.

Definition 7.3.2 Consider the minimal algebraic information system Am = (DA,∇A,`m
A )

and any binary relation R ⊆ Pfin(DA)×Pfin(DA). We say that a set x ⊆ DA is a theory

with respect to R, if x is consistent, that is ∇A 6∈ x, and closed under R, that is if u ⊆ x

and uRv, then v ⊆ x.

Theorem 7.3.1 Consider the minimal algebraic information system Am = (DA,∇A,`m
A )

and any binary relation R ⊆ Pfin(DA)×Pfin(DA). If there is at least one closed theory

x with respect to R, then AR = (DA,∇A,`R
A) is an algebraic information system and

domain |AR| is equal to the set of all theories closed with respect to R.

Corollary 7.3.1 Consider an algebraic information system A = (DA,∇A,`A) and any

binary relation R ⊆ Pfin(DA)×Pfin(DA). Define binary relation R′ = R
⋃
`A. Then if

domain |A| contains at least one element which is a theory closed with respect to R, then

domain |AR′ | consists of those elements of the domains |A|, which are theories closed

with respect to R.

7.4 The Domain of Algebraic Subdomains

We are now ready to study the domain of algebraic subdomains of an algebraic Scott

domain |A|. We denote this domain |Sub(A)|. This domain will consist of all generalized

non-trivial closures from |[A → A>]|. These closures will represent the corresponding

algebraic subdomains of |A|.

Theorem 7.4.1 The set |Sub(A)| of generalized non-trivial closures from |[A → A>]|

is an algebraic subdomain of the algebraic Scott domain |[A→ A>]|. Hence, |Sub(A)| is

an algebraic Scott domain itself.

47



Proof. Consider the algebraic information system F = [A → A>]. We need

to define the relation R, which would axiomatize properties of generalized non-trivial

closures.

Consider the following three sets:

Rr = {〈∅, {〈u, v〉}〉 | u `A v, u, v ∈ Pfin(DA)}.

Rt = {〈{〈u, v〉, 〈v, w〉}, {〈u, w〉}〉 | u, v, w ∈ Pfin(DA)}.

Rn = {{∅,∇A>}, {∇F }}.

They axiomatize, respectively, reflexivity, transitivity, and non-triviality.

Take R = Rr

⋃
Rt

⋃
Rn.

The set `A is an approximable mapping from |F | = |[A→ A>]|. (Remark: | `A |

is the embedding λx.x). `A is also a theory with respect to R. Hence, the corollary from

the previous section implies, that domain |FR′ | consists of those elements of the domains

|F |, which are theories closed with respect to R. It is easy to see that these elements are

precisely all generalized non-trivial closures.

Hence, the information system FR′ is exactly the information system Sub(A) we

have been looking for. 2

Theorem 7.4.2 For any b, c ∈ |Sub(A)|, b vSub(A) c iff for the corresponding algebraic

subdomains |B| and |C|, |C| ⊆ |B|.

The idea behind this result is simple: the stronger the entailment, i.e. the

larger the generalized closure is, the fewer elements of |A| remain intact (consistent and

deductively closed).

This differs favorably from [49] and from the other approaches to subdomains as

sets of fixed points of projections, where subdomains are ordered by inclusion. Indeed, the

smaller a subdomain is as a set, the more information we have about each of its elements,

and hence, the larger this subdomain should be informationally (integers w reals is

desirable).

Theorem 7.4.3 The continuous functions |i| : |A| → |Sub(A)| and |j| : |Sub(A)| → |A|

defined below yield a projection of |Sub(A)| onto |A|. In terms of closure operations
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|i|(y) = λx : |A|.x tA> y;

|j|(r) = |r|(⊥).

In terms of subdomains themselves

|i|(y) = {x ∈ |A| | x w y};

|j|(S) = min|A| S, where S is a subdomain of |A|.

Notice that some light non-triviality is involved in the construction of the em-

bedding |i| : |A| → |Sub(A)|. All one-element subsets of |A| form subdomains (the

corresponding generalized closure is |ry| = λx : |A>|.if x v y then y else >A>). But

due to Theorem 7.4.2, they are all incomparable (in fact, they are total elements in

|Sub(A)|). Therefore, the function x 7→ {x} is not monotonic. This implies that this

function is not Scott continuous and cannot be used as an embedding.

7.5 Open Issues

7.5.1 Reflexive Domain of Algebraic Subdomains

Because |A| and |Sub(A)| form an embedding-projection pair, we can use the inverse limit

construction to obtain solutions of certain domain equations involving Sub [35, 36, 48],

e.g. |X| ∼= |Sub(X)|, |X| ∼= |Sub(X)|+ |A|, etc. Because Sub(A) describes theories of all

possible ways to intensify our means of entailment in A, it might be of interest to study

explicitly the iterations of this construction, Sub(Sub(A)), Sub3(A), etc., and their limit

D, where |D| ∼= |Sub(D)|.

7.5.2 Relationship between Subdomains and Subtypes

In [7] we expressed the opinion that compile-time and inheritance-oriented approaches to

types, like subclasses in object-oriented programming and variants of strongly normal-

izing typed lambda-calculi, are incompatible with retraction-based subtyping in domain

theory. This opinion was further confirmed by our reading of Section 10.4.4 on partial

equivalence relations as types for systems with subtyping in the textbook by Mitchell [40].
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Mitchell explains that in such systems entailment relation for the supertype should, in

general, be stronger, than entailment for the subtype. This and next chapters show that

this is impossible for retractions yielding algebraic domains, at least as long as we stay

with the reflexive transitive finitary logic.

Thus the issue of developing practical programming language with types con-

forming to “data types as objects” paradigm [49], where types are run-time first-class

objects, and any compile-time type checking and inference is considered to be an op-

timizing partial evaluation, remains an important open issue. As long as denotational

semantics of such a language is expressible via algebraic domains, the notion of subtyping

should probably correspond to the notion of subdomain developed in this chapter.
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Chapter 8

Finitary Retractions and

Projections

This chapter represents our results obtained in 1986-1988 and presented in [8]. With the

introduction of our new version of the definition of algebraic information system and our

ideas in nonreflexive logic this material became much more transparent.

In general, sets of fixed points of retractions of algebraic Scott domains form

continuous Scott domains. In this chapter we study the classes of finitary retractions

and projections.

Definition 8.0.1 A retraction or projection of an algebraic Scott domain |r| : |A| → |A|

is called finitary if its set of fixed points is algebraic.

For the duration of this chapter “domain” means algebraic Scott domain, “sub-

domain” means algebraic Scott subdomain, and “information system” means algebraic

information system.
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8.1 Characterization of the Classes of Finitary Re-

tractions and Projections

8.1.1 Finitary Retractions

Lemma 8.1.1 A retraction |r| of an algebraic Scott domain |A| is finitary if and only if

there is an algebraic Scott domain |B| and Scott continuous functions |i| : |B| → |A| and

|j| : |A| → |B|, such that 〈|i|, |j|〉 is an embedding-retraction pair, such that |r| = |i| ◦ |j|.

Proof. It is enough to establish, that the embedding Fix(|r|) → |A| and the

map R : |A| → Fix(|r|), where R(x) = |r|(x) for all x ∈ |A|, are Scott continuous. This,

in turn, follows from the fact that given a directed set S of fixed points of |r|, the least

upper bound of S in |A| is also a fixed point of |r|. 2

Definition 8.1.1 We say that a retraction |r| of an algebraic Scott domain |A| possesses

the intermediate reflexive property if

∀u, w ∈ Pfin(DA). urw ⇒ ∃v ∈ Pfin(DA). urv, vrv, vrw.

Lemma 8.1.2 Consider a retraction |r| of an algebraic Scott domain |A| possessing the

intermediate reflexive property. Define Ar = (Dr
A,∇r

A,`r
A) as follows. Let Dr

A = {u ∈

Pfin(DA) | uru}. Let ∇r
A = {∇A}. Let {u1, . . . , un} `r

A {v1, . . . , vm} iff

(u1

⋃
. . .
⋃

un)r(v1

⋃
. . .
⋃

vm) for all u1, . . . , un, v1, . . . vm ∈ Dr
A.

Then Ar is an algebraic information system and |Ar| ∼= Fix(|r|).

Proof. Checking the axioms of algebraic information system for Ar is straight-

forward. Observe that reflexivity of `r
A follows from our selection of only such elements

u ∈ Pfin(DA) as members of Dr
A, that uru.

Now we use the intermediate reflexive property of r. For any x ∈ Fix(|r|), the set

{u ∈ Dr
A | u ⊆ x} belongs to |Ar|. For any y ∈ |Ar|, the set

⋃
{u | u ∈ y} is a fixed point

of |r|. These are monotonic injective maps. This establishes the desired isomorphism.

2
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Lemma 8.1.3 Given an algebraic information system A and an approximable mapping

r from A to A defining a retraction |r|, the following conditions are equivalent:

1. |r| is finitary.

2. ∀u, w ∈ Pfin(DA). urw ⇒ ∃v ∈ Pfin(DA). urv, vrv, vrw.

3. ∀u, w ∈ Pfin(DA). urw ⇒ ∃v ∈ Pfin(DA). urv, vrv, v `A w.

Proof. 3⇒ 2 follows from r being an approximable mapping, and 2⇒ 3 follows

from considering v′ = v
⋃

w and observing that urv, vrv, vrw implies urv′, v′rv′, v′ `A w.

2⇒ 1 follows from the previous lemma.

Here we prove 1⇒ 2. Consider an algebraic information system B and approx-

imable mappings i and j from the Lemma 8.1.1. Consider u, w ∈ Pfin(DA), such that

urw. Then there is v′ ∈ Pfin(DB), such that ujv′ and v′iw, because r = i ◦ j. Because

j ◦ i =`B , there is v ∈ Pfin(DA), such that v′iv and vjv′. Then urv, vrv, and vrw. 2

8.1.2 Finitary Projections

Lemma 8.1.4 Given an algebraic information system A and an approximable mapping

p from A to A, the following conditions are equivalent:

1. |p| is a finitary projection.

2. ∀u, w ∈ Pfin(DA). upw ⇒ ∃v ∈ Pfin(DA). u `A v, vpv, v `A w.

Proof. 1⇒ 2 follows from the previous lemma and the fact that for a projection

upv ⇒ u `A v.

To prove 2⇒ 1, observe that in the condition 2 upv and vpw, so |p| is a finitary

retraction, and u `A w, so |p| is a projection. 2
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8.2 Domains of Fixed Points of Finitary Projections

and Retractions from the Viewpoint of Logic of

Fixed Points

We could have used our technique of fixed-point subdomains to describe the set of fixed

points of an arbitrary or finitary retraction or projection. However, since arbitrary

retractions and projections do not possess reflexivity property, this would move us outside

of the realm of algebraic information system even in the finitary case.

Instead, we use the fact that finitary retractions are exactly those possessing the

intermediate reflexive property that if ∀u, w ∈ Pfin(DA). urw ⇒ ∃v ∈ Pfin(DA). urv, vrv,

vrw. Informally, this means that there are sufficiently many finite conjuctions v, which

are reflexive (vrv) with respect to the retraction r, considered as prospective entailment

relation, so that any entailment done by r can be done via such a reflexive conjuction

v. These reflexive conjunctions serve as a backbone of the new algebraic information

system Ar describing the domain isomorphic to the domain of fixed points of |r|.

Then, in the case of r defining a projection, we build the domain |Ar| via mecha-

nism of conjuctive completion and of forgetting the statements, not reflexive with respect

to r. In the case of r defining a general finitary retraction, we also have to replace the

native entailment by the one induced by r (Lemma 8.1.2). It is precisely the forgetting

step, which makes it impossible to consider sets of fixed points of finitary projections

and retractions as algebraic subdomains, as we will see later in this section.

8.2.1 Conjuctive Completeness

We say that algebraic information system A is (finitely) conjunctively complete, if for

any u ∈ Pfin(DA), there is d ∈ DA, such that {d} `A u and u ` {d}.

The step Dr
A = {u ∈ Pfin(DA) | uru} in Lemma 8.1.2 provides for conjuc-

tive completion. Actually, A`A

A yield precisely the conjuctive completion of algebraic

information system A, and |A`A

A | ∼= |A|.

It is actually enough to add conjuctions only for such u ∈ Pfin(DA), that uru
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and there is no such d ∈ DA, that {d} `A u and u ` {d}, so if we start from a conjuctively

complete system to begin with, the conjuctive completion step can be omitted.

8.2.2 Domains of Fixed Points of Finitary Projections

When p defines a finitary projection, the construction of Lemma 8.1.2 is rewritten as

follows.

An algebraic information system Ap = (Dp
A,∇p

A,`p
A) is defined by Dp

A = {u ∈

Pfin(DA) | upu}, ∇p
A = {∇A}, {u1, . . . , un} `p

A {v1, . . . , vm} iff (u1

⋃
. . .
⋃

un) `A

(v1

⋃
. . .
⋃

vm) for all u1, . . . , un, v1, . . . vm ∈ Dp
A.

As before, |Ap| ∼= Fix(|p|).

If the information system A was conjuctively complete to begin with, the con-

struction above could be modified as follows:

Dp
A = {d ∈ DA | {d}p{d}}, ∇p

A = ∇A, u `p
A v ⇔ u `A v for all u, v ∈ Pfin(Dp

A).

Then for any x ∈ Fix(|p|), the set x
⋂

Dp
A would belong to |Ap|. For any y ∈ |Ap|,

the deductive closure of y in A is a fixed point of |p|. This establishes the desired

isomorphism. In this case, for any x ∈ |A|, |p|(x) is the deductive closure of x
⋂

Dp
A in

A.

8.2.3 Why Finitary Projections Do Not Form Algebraic Subdo-

mains

We give two examples. The first example illustrates the need for conjunctive complete-

ness or conjuctive completion. The second example actually shows, why forgetting does

not allow us to consider sets of fixed points of finitary projections to be subdomains. In

both examples we only list domain elements and sets of fixed points and leave it to the

reader to restore the actual information systems and projections.

Consider the domain |A| = {∅, {1}, {2}, {1, 2}}. Consider the projection |p| of |A|

onto {∅, {1, 2}}. While there is an informaton system describing the domain {∅, {1, 2}},

it cannot be obtained by a projection from our original domain, because the original

domain is not conjunctively complete. The first version of our construction would allow
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us to obtain the domain isomorphic to Fix(|p|) as |Ap| = {∅, {{1, 2}}} via a conjunctive

completion.

On the other hand, if we consider an isomorphic conjunctively complete situa-

tion, {∅, {1}, {2}, {1, 2, t}} and its projection onto {∅, {1, 2, t}}, the second version of our

construction of Ap would yield {∅, {t}}.

The set {∅, {1, 2}} in the previous example can still be obtained as a sub-

domain of |A|, although not via a projection. Now we consider a different example,

namely |A| = {∅, {1}, {1, 2}, {1, 3}}, and its projection |p| onto {∅, {1, 2}, {1, 3}}. The

set {∅, {1, 2}, {1, 3}} is not a domain determined by any algebraic information system

(consider, what would be {1}). The set {∅, {1, 2}, {1, 3}} is not a subdomain of |A| and

cannot be obtained from |A| via a closure operation (consider, where would {1} go un-

der a closure). This is a conjunctively closed situation, and the second version of our

construction of Ap yields |Ap| = {∅, {2}, {3}}.

The last example shows that sometimes a set of fixed points of a finitary projec-

tion is not equal to any domain described by an algebraic information system and, hence,

cannot be considered an algebraic subdomain of the original domain. In other cases, like

our first example, the set in question is an algebraic subdomain, but the closure oper-

ation describing it does not have anything in common with the finitary projection in

question.

8.2.4 Domains of Fixed Points of Generalized Nontrivial Fini-

tary Retractions

In order to fully incorporate the discourse of the previous two chapters into the framework

of finitary retractions, one has to consider generalized nontrivial retractions |r| : |A| →

|A>|, such that |r|(⊥) 6= >A> and |r|(|r|(x)) = |r|(x), when |r|(x) 6= >A> .

In order to use the setup of Lemma 8.1.1, one has to consider retraction |r′| :

|A>| → |A>|, such that |r′|(>A>) = >A> and |r′|(x) = |r|(x) for x ∈ |A|. Notice that

|B| has the compact top element, and that Fix(|r|) ∼= |B 6>|.

Definition 8.1.1 can be extended to the generalized retraction |r| without change.
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Lemma 8.1.2 and its proof are applicable to the generalized nontrivial retraction

|r| without change as well.

Lemma 8.1.3 also holds for |r|, but in order to establish 1⇒ 2 in its proof, one

should consider |r′|.

Lemma 8.1.3 gives the criterion of finitarity of generalized nontrivial retractions,

and Lemma 8.1.2 yields the construction of the domain isomorphic to the domain of fixed

points of a generalized nontrivial finitary retraction.

8.2.5 Other Criteria of Finitarity

The following criterion of finitarity for projections was known before. A projection |p| :

|A| → |A| is finitary iff ∀x ∈ |A|. x = |p|(x) ⇒ x = t{x0 ∈ |A|0 | x0 = |p|(x0), x0 v x}.

This criterion can be obtained from Lemma 1(ii) of [29], which in effect says that the set

of finite elements in Fix(|p|) is {x0 ∈ |A|0 | x0 = |p|(x0)}.

The consideration of information systems easily produces a much nicer criterion

based on the intermediate reflexive property (Lemma 8.1.4). It does not require consid-

eration of arbitrary non-finite elements x and allows to select finitary projections from

the space of all continuous functions rather than from the space of projections. It can be

literally rewritten in term of abstract cpo’s: ∀x0, z0 ∈ A0. z0 v |p|(x0)⇒ ∃y0 ∈ A0. x0 w

y0 w z0, y0 = |p|(y0). Yet, one is unlikely to chose this criterion if he does not consider

information systems because it involves inequality z0 v |p|(x0). Also notice that in this

case we have to consider |p|(x0), which is generally not finite.

For retractions, the criterion based on the intermediate reflexive property is given

by Lemma 8.1.3. In terms of abstract cpo’s our criterion can be rewritten as follows:

a retraction |r| : |A| → |A| is finitary iff ∀x0, z0 ∈ A0. z0 v |p|(x0) ⇒ ∃y0 ∈ A0. y0 v

|p|(x0), y0 v |p|(y0), z0 v |p|(y0).

The finite elements of Fix(|r|) are obtained as images of the finite elements of

|A| under |r|. Hence, in the style close to [29], another criterion can be written as follows:

a retraction |r| : |A| → |A| is finitary iff ∀x ∈ |A|. x = |r|(x) ⇒ x = t{|r|(x0) | x0 ∈

|A|0, x0 v |r|(x0) v x}.
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8.3 Domains of Finitary Projections and Generalized

Finitary Retractions

8.3.1 Domain of Finitary Projections

The set of all finitary projections |A| → |A| can be obtained as the set of fixed points of

the finitary projection |Pr| of |A → A|. Specifically, if g ∈ |A → A| define f = |Pr|(g)

by ufw iff ∃v ∈ Pfin(DA). u `A v, vgv, v `A w.

It is easy to check that f is a finitary projection, and that if g is a finitary

projection then g = |Pr|(g). To prove that |Pr| itself is a continuous function and a

finitary projection, one should notice that {(u1, w1), . . . , (un, wn)}Pr{(u, w)} iff ∃v. u `A

v, v `A w, {(u1, w1), . . . , (un, wn)} `A→A (v, v).

8.3.2 Domain of Generalized Finitary Retractions

In a similar fashion the set of all generalized nontrivial finitary retractions can be obtained

as a set of fixed points of a generalized nontrivial finitary retraction |Ret| of |A→ A>|.

Hence this set is an algebraic Scott domain.

8.4 Omitted Issues

The details of construction of |Ret| is omitted in the present text. This construction

is the result of mating the construction of |Pr| with the construction of the domain of

subdomains.

8.4.1 Limits of Projective Sequences

It is possible to generalize the construction of the limits of some projective sequences of

domains defined by algebraic information systems, {〈|An|, |An+1|, |in|, |jn|〉 | |in| : |An| →

|An+1|; |jn| : |An+1| → |An|; 〈|in|, |jn|〉 is an embedding-projection pair; n = 1, . . .},

from [35, 36] to arbitrary sequences of this kind. We do not give the details of the

generalized construction here.
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8.5 Open Issues

8.5.1 Issues Related to the Domain of Finitary Retractions

I do not know, whether |Ret| is unique.

The question might be somewhat related to the properties of the space of all

retractions, say, of a powerset. This space is a complete lattice, but it is not algebraic

and not even continuous.

8.5.2 Other Subclasses of Finitary Retractions

Here we look at two special subclasses of the class of finitary retractions, which may

deserve special attention.

Let us look at the criteria for finitarity of retractions and projections once

more. For retractions it is urw ⇒ ∃v. urv, vrv, vrw, which can be rewritten as urw ⇒

∃v. urv, vrv, v ` w. For projections it is upw ⇒ ∃v. u ` v, vrv, v ` w. There is an

intermediate case — retractions satisfying the property that urw ⇒ ∃v. u ` v, vrv, vrw.

This class of retractions includes both finitary projections and closure operations, and

the retractions from this class possess a certain weak property of minimality, hence they

can be called quasi-minimal.

Another class is obtained from the observation that while for finitary projections

finite elements of sets of fixed points are finite in the original domain too, this does not

generally hold for finitary retractions. We can call the retractions possessing this property

strongly finitary. The class of strongly finitary retractions includes the class of finitary

projections, but does not include the class of closure operations.

Both quasi-minimal retractions and strongly finitary retractions may be worth

more detailed studies.
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Part III

Elements of Analysis on

Domains
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Chapter 9

Co-continuous Valuations

In this chapter we present our joint results with Svetlana Shorina [15, 16]. We study the

continuous normalized valuations µ on the systems of open sets of domains and introduce

notions of co-continuity, {Ui, i ∈ I} is a filtered system of sets ⇒ µ(Int(
⋂

i∈I Ui)) =

infi∈I µ(Ui), and strong non-degeneracy, U ⊂ V are open sets ⇒ µ(U) < µ(V ), for such

valuations. We call the resulting class of valuations CC-valuations. The central result

of this chapter is a construction of CC-valuations for Scott topologies on all continuous

dcpo’s with countable bases.

It seems that the notion of co-continuity of valuations and this result for the

case of continuous Scott domains with countable bases are both new and belong to

us [15, 16]. The generalization of this result to continuous dcpo’s with countable bases

belongs to Klaus Keimel [32]. He worked directly with completely distributive lattices of

Scott open sets of continuous dcpo’s and used the results about completely distributive

lattices obtained by Raney in the fifties (see Exercise 2.30 on page 204 of [24]). Here

we present a proof which can be considered a simplification of both our original proof

and the proof obtained by Keimel. This proof also works for all continuous dcpo’s with

countable bases. A part of this proof, as predicted by Keimel, can be considered as

a special case of Raney’s results mentioned above. However, our construction is very

simple and self-contained.
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Keimel also pointed out in [32] that our results are quite surprising, because both

co-continuity and strong non-degeneracy seem contradictory, as neither of them can hold

for the system of open sets of the ordinary Hausdorff topology on [0, 1]. However, if

we replace the system of open sets of this Hausdorff topology with the system of open

intervals, both conditions would hold. We believe that the reason behind our results is

that the Scott topology is coarse enough for its system of open sets to exhibit behaviors

similar to the behaviors of typical bases of open sets of Hausdorff topologies.

9.1 CC-valuations

Consider a topological space (X,O), where O consists of all open subsets of X. The

following notions of the theory of valuations can be considered standard (for the most

available presentation in a regular journal see [19]; the fundamental text in the theory

of valuations on Scott opens sets is [31]).

Definition 1.1. A function µ : O → [0,+∞] is called valuation if

1. ∀U, V ∈ O. U ⊆ V ⇒ µ(U) ≤ µ(V );

2. ∀U, V ∈ O. µ(U) + µ(V ) = µ(U ∩ V ) + µ(U ∪ V );

3. µ(∅) = 0.

Definition 1.2. A valuation µ is bounded if µ(X) < +∞. A valuation µ is

normalized if µ(X) = 1.

Remark: If a valuation µ is bounded and µ(X) 6= 0, then it is always easy to

replace it with a normalized valuation µ′(U) = µ(U)/µ(X).

Definition 1.3. Define a directed system of open sets, U = {Ui, i ∈ I}, as

satisfying the following condition: for any finite number of open sets Ui1 , Ui2 , · · · , Uin ∈

U there is Ui, i ∈ I, such that Ui1 ⊆ Ui, · · · , Uin
⊆ Ui.

Definition 1.4. A valuation µ is called continuous when for any directed system

of open sets µ(
⋃

i∈I Ui) = supi∈I µ(Ui).

We introduce two new properties of valuations.
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Definition 1.5. A valuation µ : O → [0,+∞] is strongly non-degenerate if

∀U, V ∈ O. U ⊂ V ⇒ µ(U) < µ(V ).

This is, obviously, a very strong requirement, and we will see later that it might

be reasonable to look for weaker non-degeneracy conditions.

Consider a decreasing sequence of open sets U1 ⊇ U2 ⊇ . . ., or, more generally,

a filtered system of open sets U = {Ui, i ∈ I}, meaning that for any finite system of open

sets Ui1 , · · ·Uin
∈ U there is Ui, i ∈ I, such that Ui ⊆ Ui1 , · · · , Ui ⊆ Uin

. Consider the

interior of the intersection of these sets. It is easy to see that for a valuation µ

µ(Int(
⋂
i∈I

Ui)) ≤ inf
i∈I

µ(Ui).

Definition 1.6. A valuation µ is called co-continuous if for any filtered system

of open sets {Ui, i ∈ I}

µ(Int(
⋂
i∈I

Ui)) = inf
i∈I

µ(Ui).

Definition 1.7. A continuous, normalized, strongly non-degenerate,

co-continuous valuation µ is called a CC-valuation.

Informally speaking, the strong non-degeneracy provides for non-zero contribu-

tions of compact elements and reasonable “pieces of space”. The co-continuity provides

for single non-compact elements and borders B \ Int(B) of “reasonable” sets B ⊆ A to

have zero measures.

“Reasonable” sets here are Aleksandrov open (i.e. upwardly closed) sets. Thus,

it is possible to consider co-continuity as a method of dealing with non-discreteness of

Scott topology. We follow here the remarkable definition of a discrete topology given

by Aleksandrov: a topology is discrete if an intersection of arbitrary family of open

sets is open (e.g. see [3]). Of course, if one assumes the T1 separation axiom, then

the Aleksandrov’s definition implies that all sets are open — the trivial version of the

definition, which is unfortunately the only one found in the most textbooks. In this

sense, Aleksandrov topology of upwardly closed sets is discrete, but Scott topology is

not. The further development of this viewpoint might prove to be fruitful.
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We should also notice that since our valuations are bounded, they can be ex-

tended onto closed sets via formula µ(C) = µ(A) − µ(A \ C), and all definitions of this

section can be expressed in the dual form. This gives us considerable benefits in applica-

tions of these valuations and also suggests that the generalization of these applications

to the case of unbounded valuations is a non-trivial undertaking.

A bounded valuation µ can be uniquely extended to an additive measure defined

on the ring of sets generated from the open sets by operations ∩, ∪, \ [42]. We feel that

it is useful to draft a possible construction here. We will denote the resulting additive

measure also as µ.

First, consider all sets U ∩ C, where U is open and C is closed. They form

so-called semiring, which contains ∅, is closed under finite intersections, and possesses

the following property: If S = U ∩ C, S1 = U1 ∩ C1, S1 ⊂ S, then there is a system of

n non-intersecting sets Si = Ui ∩ Ci (in fact, it is enough to take n = 3 here), such that

S =
⋃

i=1,...,n Si.

Then define µ(U ∩C) = µ(U)− µ(U \C), using the fact that U \C = U ∩C is

an open set. Then observe that this definition is correct, i.e. if U ∩ C = U1 ∩ C1 then

µ(U) − µ(U \ C) = µ(U1) − µ(U1 \ C1), and that the resulting measure is additive for

the decomposition above: µ(S) = µ(S1)+ . . .+µ(Sn). Then the unique extension to the

ring of sets in question is the standard result of measure theory.

The issues of σ-additivity are not in the scope of this text (interested readers

are referred to [31, 4]). We deal with the specific infinite systems of sets we need, and

mainly focus on quite orthogonal conditions given to us by co-continuity of µ.

9.2 Examples

9.2.1 Valuations Based on Weights of Basic Elements

Consider a continuous dcpo A with a countable basis K. Assign the converging system

of weights to basic elements: w(k) > 0,
∑

k∈K w(k) = 1. Define µ(U) =
∑

k∈U w(k). It

is easy to see that µ is a continuous, normalized, strongly non-degenerate valuation.
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However, µ is co-continuous if and only if all basic elements are compact (which

is possible only if A is algebraic). To see why this is so, we undertake a small discourse,

which will be useful for us later in this text.

First, observe that intersection of arbitrary system of Alexandrov open (i.e.

upwardly closed) sets is Alexandrov open. Also it is a well-known fact that {y | y � x}

is Scott open in a continuous dcpo.

Lemma 9.2.1 (Border Lemma) Consider an Alexandrov open set B ⊆ A. Then its

interior in the Scott topology, Int(B) = {y ∈ A | ∃x ∈ B. x � y}. Correspondingly, the

border of B in the Scott topology, B \ Int(B) = {y ∈ B | ¬(∃x ∈ B. x� y)}

Lemma 9.2.2 If K is a basis of compact elements, then µ(U) =
∑

k∈U w(k), where

w(k) > 0,
∑

k∈K w(k) = 1, defines a CC-valuation.

Proof. (of co-continuity) Consider a filtered system of open sets {Ui, i ∈ I}. The

set B =
⋂

i∈I Ui is Alexandrov open. Because {Ui} is filtered, it is easy to see that∑
k∈B w(k) = infi∈I µ(Ui). Because basic elements of K are compact, k ∈ K, k ∈ B ⇒

k ∈ Int(B). Hence
∑

k∈B w(k) =
∑

k∈Int(B) w(k). 2

Lemma 9.2.3 If K contains a non-compact element x, then µ(U) =
∑

k∈U w(k), where

w(k) > 0,
∑

k∈K w(k) = 1 is not co-continuous.

Proof. By the definition of basis, x = tKx, where Kx = {k ∈ K | k � x} is a directed

set. For any k, consider Uk = {y | y � k}. Because Kx is directed, it is easy to see that

{Uk, k ∈ Kx} is filtered. Consider B =
⋂

k∈Kx
Uk. It is easy to see that x ∈ B.

Let us show that x 6∈ Int(B). If x ∈ Int(B) then there is y ∈ B such that y � x

by the Border Lemma. Then y v k for some k ∈ Kx, and since B is upwardly closed,

k ∈ B. This means that ∀k′ ∈ Kx. k′ � k yielding x v k and k � x. Therefore k = x

and x is compact, which is a contradiction.

Thus,

x 6∈ Int(B)⇒
∑
k∈B

w(k) ≥
∑

k∈Int(B)

w(k) + w(x) >
∑

k∈Int(B)

w(k)
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Since
∑

k∈B w(k) = infk∈Kx
µ(Uk) the Lemma is proved. 2

9.2.2 A Vertical Segment of Real Line

Consider the segment [0, 1], v=≤. Define µ((x, 1]) = 1 − x. Unfortunately, to ensure

strong non-degeneracy we have to define µ([0, 1]) = 1 + ε, ε > 0. This is the first hint

that strong non-degeneracy might constitute too strong a restriction in many cases. In

order to obtain a normalized valuation we have to consider µ′(U) = µ(U)/(1 + ε). The

resulting µ′ is a CC-valuation.

9.2.3 Interval Numbers

Consider the domain RI of interval numbers belonging to the segment [0, A], where A

is finite. Consider a Scott open U ⊆ RI . Define µ0(U) as the geometric area of U . This

is a co-continuous valuation.

To insure strong non-degeneracy, we must concentrate some weight on segments

[[0, A], [0, 0]] and [[0, A], [A,A]] and point [0, A]. In order to do that, we take positive

ε, ε1, ε2 and define µ(U) = µ0(U) + ε1 · Length(U ∩ [[0, A], [0, 0]]) + ε2 · Length(U ∩

[[0, A], [A,A]]) when U 6= RI , and µ(RI) = 0.5 ·A2 + (ε1 + ε2) ·A + ε.

Now we can obtain a CC-valuation µ′ by defining µ′(U) = µ(U)/µ(RI).

9.3 Constructing CC-valuations

In this section we build a CC-valuation for all continuous dcpo’s with countable bases.

The construction generalizes the one of Subsection 9.2.1. We are still going to assign

weights, w(k) > 0, to compact elements. For non-compact basic elements we proceed

as follows. We focus our attention on the pairs of non-compact basic elements, (k′, k′′),

which do not have any compact elements between them, and call such elements continu-

ously connected. We observe, that for every such pair we can construct a special kind of

vertical chain, which “behaves like the vertical segment [0, 1] of real line”. We call such

chain a stick. We assign weights, v(k′, k′′) > 0, to sticks as well, in such a way that the
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sum of all w(k) and all v(k′, k′′) is 1.

As in Subsection 9.2.1, compact elements k contribute w(k) to µ(U), if k ∈ U .

An intersection of the stick, associated with a continuously connected pair (k′, k′′), with

an open set U “behaves as either (q, 1] or [q, 1]”, where q ∈ [0, 1]. Such stick contributes

(1− q) · v(k′, k′′) to µ(U). The resulting µ is the desired CC-valuation.

It is possible to associate a complete lattice homomorphism from the lattice of

Scott open sets to [0, 1] with every compact element and with every stick defined by

basic continuously connected elements, k′ and k′′. Then, as suggested by Keimel [32],

all these homomorphisms together can be thought of as an injective complete lattice

homomorphism to [0, 1]J . From this point of view, our construction of µ is the same as

in [32].

Thus the discourse in this section yields the proof of the following:

Theorem 9.3.1 For any continuous dcpo A with a countable basis, there is a CC-

valuation µ on the system of its Scott open sets.

9.3.1 Continuous Connectivity and Sticks

Definition 3.1. Two elements x � y are called continuously connected if the set

{k ∈ A | k is compact, x� k � y} is empty.

Remark: This implies that x and y are not compact.

Lemma 9.3.1 If x� y are continuously connected, then {z |x� z � y} has cardinality

of at least continuum.

Proof. We use the well-known theorem on intermediate values that x � y ⇒ ∃z ∈

A. x � z � y (see [28]). Applying this theorem again and again we build a countable

system of elements between x and y as follows, using rational numbers as indices for

intermediate elements:

x� a1/2 � y, x� a1/4 � a1/2 � a3/4 � y, . . .
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All these elements are non-compact and hence non-equal. Now consider a directed set

{ai | i ≤ r}, where r is a real number, 0 < r < 1. Introduce br = t{ai | i ≤ r}. We prove

that if r < s then br � bs, and also that x� br � bs � y, thus obtaining the required

cardinality. Indeed it is easy to find such n and numbers q1, q2, q3, q4, that

x� aq1/2n v br v aq2/2n � aq3/2n v bs � aq4/2n � y.

2

Definition 3.2. We call the set of continuum different non-compact elements

{ar | r ∈ (0, 1)} between continuously connected x � y, built in the proof above, such

that x� ar � aq � z ⇔ r < q a (vertical) stick.

9.3.2 Proof of Theorem 9.3.1

Consider a continuous dcpo A with a countable basis K. As discussed earlier, with every

compact k ∈ K we associate weight w(k) > 0, and with every continuously connected

pair (k′, k′′), k′, k′′ ∈ K, we associate weight v(k′, k′′) > 0 and a stick {ak′,k′′

r | r ∈ (0, 1)}.

Since K is countable, we can require
∑

w(k) +
∑

v(k′, k′′) = 1.

Whenever we have an upwardly closed (i.e. Alexandrov open) set U , for any stick

{ak′,k′′

r | r ∈ (0, 1)} there is a number qk′,k′′

U ∈ [0, 1], such that r < qk′,k′′

U ⇒ ak′,k′′

r 6∈ U

and qk′,k′′

U < r ⇒ ak′,k′′

r ∈ U . In particular, for a Scott open set U define

µ(U) =
∑

k∈Uis compact

w(k) +
∑

k′,k′′∈Kare continuously connected

(1− qk′,k′′

U ) · v(k′, k′′)

It is easy to show that µ is a normalized valuation. The rest follows from the

following Lemmas.

Lemma 9.3.2 µ is continuous.

Proof. Consider a directed system of open sets, {Ui, i ∈ I}, and U =
⋃

i∈I Ui. We need

to show that for any ε > 0, there is such Ui, i ∈ I, that µ(U)− µ(Ui) < ε.
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Take enough (a finite number of) compact elements, k1, . . . , kn, and continuously

connected pairs of basic elements, (k′1, k
′′
1 ), . . . , (k′m, k′′m), so that w(k1) + . . . + w(kn) +

v(k′1, k
′′
1 )+. . .+v(k′m, k′′m) > 1−ε/2. For each kj ∈ U , take Uij

, ij ∈ I, such that kj ∈ Uij
.

For each (k′j , k
′′
j ), such that q

k′j ,k′′j
U < 1, take Ui′j

, i′j ∈ I, such that q
k′j ,k′′j
Ui′

j

−q
k′j ,k′′j
U < ε/(2m).

An upper bound of these Uij and Ui′j
is the desired Ui. 2

Lemma 9.3.3 µ is strongly non-degenerate.

Proof. Let U and V be Scott open subsets of A and U ⊂ V . Let us prove that V \ U

contains either a compact element or a stick between basic elements. Take x ∈ V \U . If

x is compact, then we are fine. Assume that x is not compact. We know that x = tKx,

Kx = {k ∈ K | k � x} is directed set. Since V is open ∃k ∈ Kx. k ∈ V . Since k v x

and x 6∈ U , k ∈ V \ U . If there is k′ – compact, such that k � k′ � x, we are fine,

since k′ ∈ V \ U . Otherwise, since any basis includes all compact elements, k and x are

continuously connected.

Now, as in the theorem of intermediate values x = tK̃x, K̃x = {k′ ∈ K | ∃k′′ ∈

K. k′ � k′′ � x} is directed set, thus ∃k′, k′′. k v k′ � k′′ � x, thus (k, k′′) yields the

desired stick.

If k ∈ V \U and k is compact, then µ(V )−µ(U) ≥ w(k) > 0. If the stick formed

by (k, k′) is in V \ U , then µ(V )− µ(U) ≥ v(k, k′) > 0. 2

Lemma 9.3.4 µ is co-continuous.

Proof. Recall the development in Subsection 9.2.1. Consider a filtered system of open

sets {Ui, i ∈ I}. By Lemma 9.2.1 for B =
⋂

i∈I Ui, B \ Int(B) = {y ∈ B | ¬(∃x ∈ B. x�

y)}. Notice that B \ Int(B), in particular, does not contain compact elements. Another

important point is that for any stick, qk′,k′′

B = qk′,k′′

Int(B).

The further development is essentially dual to the proof of Lemma 9.3.2. We

need to show that for any ε > 0, there is such Ui, i ∈ I, that µ(Ui)− µ(Int(B)) < ε.

Take enough (a finite number) of compact elements, k1, . . . , kn, and continuously

connected pairs of basic elements, (k′1, k
′′
1 ), . . . , (k′m, k′′m), so that w(k1) + . . . + w(kn) +

v(k′1, k
′′
1 ) + . . . + v(k′m, k′′m) > 1 − ε/2. For each kj 6∈ Int(B), take Uij , ij ∈ I, such

69



that kj 6∈ Uij
. For each (k′j , k

′′
j ), such that q

k′j ,k′′j
Int(B) > 0, take Ui′j

, i′j ∈ I, such that

q
k′j ,k′′j
Int(B) − q

k′j ,k′′j
Ui′

j

< ε/(2m). A lower bound of these Uij
and Ui′j

is the desired Ui. 2

It should be noted that Bob Flagg suggested and Klaus Keimel showed that

Lemma 5.3 of [23] can be adapted to obtain a dual proof of existence of CC-valuations

(see [22] for one presentation of this). Klaus Keimel also noted that one can consider all

pairs k, k′ of basic elements, such that k � k′, instead of considering just continuously

connected pairs and compact elements.

9.4 Open Problems

The key open problems are related to fast computation of valuations and integrals and

to canonical valuations on functional spaces and reflexive domains.

Since the similar problems exist for relaxed metrics we will return to them at

the end of the next chapter.
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Chapter 10

Relaxed and Partial Metrics

In this chapter we present our joint results with Joshua Scott [11, 12, 13]. We presume

that the methods of denotational semantics allow us to obtain adequate descriptions of

program behavior (e.g., see [53]). The term domain in this chapter denotes a directed

complete partial order (dcpo) equipped with the Scott topology.

The traditional paradigm of denotational semantics states that all data types

should be represented by domains and all computable functions should be represented

by Scott continuous functions between domains. For the purposes of this chapter all

continuous functions are Scott continuous.

Consider the typical setting in denotational semantics — a syntactic domain of

programs, P , a semantic domain of meanings, A, and a continuous semantic function,

[[ ]] : P → A. The syntactic domain P (called a syntactic lattice in [53]) represents a data

type of program parse trees, but we say colloquially that programs belong to P .

Assume that we have a domain representing distances, D, and a continuous

generalized distance function, ρ : A × A → D. Assume that we can construct a gener-

alized metric topology, T [ρ], on A via ρ. It would be reasonable to say that ρ reflects

computational properties of A, if T [ρ] is the Scott topology on A.

Then ρ([[p1]], [[p2]]) would yield a computationally meaningful distance between

programs p1 and p2. The continuous function ρ cannot possess all properties of ordinary
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metrics because we want T [ρ] to be non-Hausdorff.

10.1 Axiom ρ(x, x) = 0 Cannot Hold

Assume that there is an element 0 ∈ D representing the ordinary numerical 0. Let us

show that ∀x. ρ(x, x) = 0 cannot be true under reasonable assumptions. We will see later

that all other properties of ordinary metrics can be preserved at least for all continuous

dcpo’s with countable bases (see the next chapter).

It seems reasonable to assume that any reasonable construction of T [ρ] for any

generalized distance function ρ : A×A→ D, should satisfy the following axiom, regard-

less of whether the distance space D is a domain, or whether ρ is continuous:

Axiom 10.1.1 For all x, y ∈ A, ρ(x, y) = ρ(y, x) = 0 implies that x and y share the

same system of open sets, i.e. for all open sets U ∈ T [ρ], x ∈ U iff y ∈ U .

We assume this axiom for the rest of the chapter. A topology is called T0, if

different elements do not share the systems of open set.

Corollary 10.1.1 If there are x, y ∈ A, such that x 6= y and ρ(x, y) = ρ(y, x) = 0, then

T [ρ] is not a T0 topology.

Let us return to our main case, where D is a domain and ρ is a continuous

function.

Lemma 10.1.1 Assume that there are at least two elements x, y ∈ A, such that x <A y.

Assume that ρ : A×A→ D is a continuous function. If ρ(x, x) = ρ(y, y) = d ∈ D, then

ρ(x, y) = ρ(y, x) = d.

Proof. The continuity of ρ implies its monotonicity with respect to the both of

its arguments. Then x <A y implies d = ρ(x, x) vD ρ(x, y) vD ρ(y, y) = d. This yields

ρ(x, y) = d, and, similarly, ρ(y, x) = d. 2

Then we can obtain the following simple, but important result.
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Theorem 10.1.1 Assume that there are at least two elements x, y ∈ A, such that x <A

y. Assume that ρ : A×A→ D is a continuous generalized distance function and T [ρ] is

a T0 topology. Then the double equality ρ(x, x) = ρ(y, y) = 0 does not hold.

Proof. By Lemma 10.1.1, ρ(x, x) = ρ(y, y) = 0 would imply ρ(x, y) = ρ(y, x) =

0. Then, by Corollary 10.1.1, T [ρ] would not be T0, contradicting our assumptions. 2

The topologies used in domain theory are usually T0; in particular, the Scott

topology is T0. This justifies studying continuous generalized metrics ρ, such that

ρ(x, x) = 0 is false for some x, more closely.

10.1.1 Intuition behind ρ(x, x) 6= 0

There are compelling intuitive reasons not to expect ρ(x, x) = 0, when x is not a maximal

element of A. The computational intuition behind ρ(x, y) is that the elements in question

are actually x′ and y′, x vA x′, y vA y′, but not all information is usually known about

them. The correctness condition ρ(x, y) vD ρ(x′, y′) is provided by the monotonicity of

ρ.

In particular, even if x = y, this only means that we know the same information

about x′ and y′, but this does not mean that x′ = y′. Consider x′ 6= y′, such that

x <A x′ and x <A y′. Then ρ(x, x) vD ρ(x′, y′) and ρ(x, x) vD ρ(y′, x′), and at least

one of ρ(x′, y′) and ρ(y′, x′) is non-zero, if we want ρ to yield a T0 topology (we do not

assume symmetry yet).

Example 10.1.1 Here is an important example — a continuous generalized distance on

the domain of interval numbers RI — ρ : RI×RI → RI (see Chapter 4 for the definition

of RI). Consider intervals [a, b] and [c, d] and set S = {|x′−y′| | a ≤ x′ ≤ b, c ≤ y′ ≤ d}.

Define ρ([a, b], [c, d]) = [minS, max S]. In particular, ρ([a, b], [a, b]) = [0, b − a] 6= [0, 0],

and ρ([a, a], [b, b]) = [|a− b|, |a− b|].
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10.2 Related Work

10.2.1 Quasi-Metrics

Quasi-metrics [50] and Kopperman-Flagg generalized distances [33] are asymmetric gen-

eralized distances. They satisfy the axiom ρ(x, x) = 0 and yield the Scott topology for

various classes of domains via a construction satisfying Axiom 10.1.1.

Theorem 10.1.1 means that if one wishes to represent the distance spaces via

domains, these asymmetric distances cannot be made continuous unless their nature is

changed substantially.

The practice of representing all computable functions via continuous functions

between domains suggests that quasi-metrics cannot, in general, be computed (see Sec-

tion 10.8 for details in the effective setting).

10.2.2 Partial Metrics

Historically, partial metrics are the first generalized distances on domains for which the

axiom ρ(x, x) = 0 does not hold. They were introduced by Matthews [39, 38] and further

investigated by Vickers [54] and O’Neill [41].

Partial metrics satisfy a number of additional axioms in lieu of ρ(x, x) = 0 (see

Section 10.5). Matthews and Vickers state that ρ(x, x) 6= 0 is caused by the fact, that

x expresses a partially defined object. The most essential component of the central

construction in this and the next chapter is a partial metric (Section 10.6).

10.2.3 Our Contribution

We build partial metrics yielding Scott topologies for a wider class of domains that

was known before (see the next chapter). This class — all continuous dcpo’s with

countable bases — is sufficiently big to solve interesting domain equations and to define

denotational semantics of at least sequential deterministic programming languages [53].

Actually, a recent careful analysis of papers [34, 39] together had shown that an even

more general result followed easily from this papers taken together, however this fact
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remained unwritten folklore known only to a few people.

We introduce the notion of relaxed metric (Section 10.3), which maintains the

intuitively clear requirement to reject axiom ρ(x, x) = 0, but does not impose the specific

axioms of partial metrics. We believe that the applicability of these specific axioms is

more limited (Section 10.9.1).

We introduce the idea that a space of distances should be thought of as a data

type in the context of denotational semantics and, thus, should be represented by a

domain. We also introduce the requirement that distance functions should be computable

and, thus, Scott continuous (the use of continuous valuations in [41] should be considered

as a step in this direction).

These considerations lead to an understanding that relaxed metrics should map

pairs of partial elements to upper estimates of some “ideal” distances, where the distance

domain of upper estimates, R−, is equipped with a dual informational order: vR−=≥.

We also consider lower estimates of “ideal” distances, thus, introducing the distance

domain of interval numbers, RI . Continuous lower estimates are useful during actual

computations of distances (Section 10.8) and for defining and computing an induced

metric structure on the space of total elements (Theorem 10.6.2).

There is a comparison in [39] between partial metrics and alternative generalized

distance structures such as quasi-metrics and weighted metrics [34]. We provide what

we believe to be the strongest argument in favor of partial metrics so far — among all

those alternatives only partial metrics can be thought of as Scott continuous, computable

functions.

10.3 Relaxed Metrics

Consider distance domains in greater detail. It is conventional to think about distances

as non-negative real numbers. When it comes to considering approximate information

about reals, it is conventional to use some kind of interval numbers.

We follow both conventions in this text. The distance domain consists of pairs

〈a, b〉 (also denoted as [a, b]) of non-negative reals (+∞ included), such that a ≤ b.
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Recall from the Chapter 4 that we denote this domain as RI and that [a, b] vRI

[c, d] iff a ≤ c and d ≤ b.

Also recall that we can think about RI as a subset of R+×R−, where vR+=≤,

vR−=≥, and both R+ and R− consist of non-negative reals and +∞. We call R+ a

domain of lower bounds, and R− a domain of upper bounds. Thus a distance function

ρ : A×A→ RI can be thought of as a pair of distance functions 〈l, u〉, l : A×A→ R+,

u : A×A→ R−.

We think about l(x, y) and u(x, y) as, respectively, lower and upper bounds

of some “ideal” distance σ(x, y). We do not try to formalize the “ideal” distances,

but we refer to them to motivate our axioms. There are good reasons to impose the

triangle inequality, u(x, z) ≤ u(x, y) + u(y, z). Assume that for our “ideal” distance, the

triangle inequality, σ(x, z) ≤ σ(x, y) + σ(y, z), holds. If u(x, z) > u(x, y) + u(y, z), then

u(x, y) + u(y, z) gives a better upper estimate for σ(x, z) than u(x, z). This means that

unless u(x, z) ≤ u(x, y) + u(y, z), u could be easily improved and, hence, would be very

imperfect.

This kind of reasoning is not valid for l(x, z). In fact, there are reasonable

situations, when l(x, z) 6= 0, but l(x, y) = l(y, z) = 0. E.g., consider Example 10.1.1 and

take x = [2, 2], y = [2, 3], z = [3, 3].

Also only u plays a role in the subsequent definition of the relaxed metric topol-

ogy, and the most important results remain true even if we take l(x, y) = 0. In the last

case we sometimes take D = R− instead of D = RI making the distance domain look

more like ordinary numbers (it is important to remember, that vR−=≥ and, hence, 0 is

the largest element of R−).

We also impose the symmetry axiom on the function ρ. The motivation here is

that we presume our “ideal” distance to be symmetric, hence, we should be able to make

symmetric upper and lower estimates.

We state a definition summarizing the discourse above:

Definition 10.3.1 A symmetric function u : A × A → R− is called a relaxed metric

when it satisfies the triangle inequality. A symmetric function ρ : A× A→ RI is called
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a relaxed metric when its upper part u is a relaxed metric.

10.4 Relaxed Metric Topology

An open ball with a center x ∈ A and a real radius ε is defined as Bx,ε = {y ∈ A | u(x, y) <

ε}. Notice that only upper bounds are used in this definition — the ball only includes

those points y, about which we are sure that they are not too far from x.

We should formulate the notion of a relaxed metric open set more carefully than

for ordinary metrics, because it is now possible to have a ball of a non-zero positive

radius, which does not contain its own center.

Definition 10.4.1 A subset U of A is relaxed metric open if for any point x ∈ U , there

is an ε > u(x, x) such that Bx,ε ⊆ U .

It is easy to show that for a continuous relaxed metric on a dcpo all relaxed

metric open sets are Scott open and form a topology.

10.5 Partial Metrics

The distances p with p(x, x) 6= 0 were first introduced by Matthews [39, 38]. They are

known as partial metrics and obey the following axioms:

1. x = y iff p(x, x) = p(x, y) = p(y, y).

2. p(x, x) ≤ p(x, y).

3. p(x, y) = p(y, x).

4. p(x, z) ≤ p(x, y) + p(y, z)− p(y, y).

The last axiom (due to Vickers [54]) implies the ordinary triangle inequality, since

the distances are non-negative. O’Neill found it useful to introduce negative distances

in [41], but this is avoided in the present work.
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Whenever partial metrics are used to describe a partially ordered domain, a

stronger form of the first two axioms is used: If x v y then p(x, x) = p(x, y), otherwise

p(x, x) < p(x, y). We include the stronger form in the definition of partial metrics for

the purposes of this work.

10.6 Central Construction

Here we construct continuous relaxed metrics yielding the Scott topology for all con-

tinuous Scott domains with countable bases. Our construction closely resembles one

by O’Neill [41]. We also use valuations, but we consider continuous valuations on the

powerset of the basis instead of continuous valuations on the domain itself. This allows

us to handle a wider class of domains.

Consider a continuous Scott domain A with countable basis K. Enumerate

elements of K\{⊥A}: k1, ..., ki, .... Associate weights with all basic elements: w(⊥A) = 0,

and let w(ki) form a converging sequence of strictly positive weights. For convenience

we agree that the sum of weights of all basic elements equals 1. For example, one might

wish to consider w(ki) = 2−i or w(ki) = ε(1 + ε)−i, ε > 0. Then for any K0 ⊆ K, the

weight of set K0, W (K0) =
∑

k∈K0
w(k0), is well defined and belongs to [0, 1].

We have several versions of function ρ. For most purposes it is enough to consider

u(x, y) = 1 −W (Kx ∩Ky) and l(x, y) = 0. Sometimes it is useful to consider a better

lower bound function l(x, y) = W (Ix ∪ Iy), where Ix = {k ∈ K | k t x does not exist}

for the computational purposes (Section 10.8).

Theorem 10.6.1 The function u is a partial metric. The function ρ is a Scott contin-

uous relaxed metric. The relaxed metric topology coincides with the Scott topology.

If, in addition, we would like the next theorem to hold, we have to consider

a different version of ρ with u(x, y) = 1 − W (Kx ∩ Ky) − W (Ix ∩ Iy) and l(x, y) =

W (Kx ∩ Iy) + W (Ky ∩ Ix). The previous theorem still holds.

We introduce the notion of a regular basis. A set of maximal elements in A is

denoted as Total(A) . We say that the basis K is regular if ∀k ∈ K, x ∈ Total(A). k v
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x⇒ k � x. In particular, if K consists of compact elements, thus making A an algebraic

Scott domain, K is regular.

Theorem 10.6.2 Let K be a regular basis in A. Then for all x and y from Total(A),

l(x, y) = u(x, y). Consider µ : Total(A) × Total(A) → R, µ(x, y) = l(x, y) = u(x, y).

Then (Total(A), µ) is a metric space, and its metric topology is the subspace topology

induced by the Scott topology on A.

10.7 Proofs of Theorems 10.6.1 and 10.6.2

Here we prove relatively difficult parts of these theorems for the case when u(x, y) =

1−W (Kx ∩Ky)−W (Ix ∩ Iy) and l(x, y) = W (Kx ∩ Iy) + W (Ky ∩ Ix). Lemma 10.7.2

is needed for Theorem 10.6.2, and other lemmas are needed for Theorem 10.6.1.

Lemma 10.7.1 ((Correctness of lower bounds)) l(x, y) ≤ u(x, y).

Proof. Using Kx∩Ix = ∅ we can rewrite u and l. u(x, y) = 1−W (Kx∩Ky)−W (Ix∩Iy) =

W (U), where U = (Kx∩Ky)∪(Ix∩Iy). l(x, y) = W (V ), where V = (Kx∩Iy)∪(Ky∩Ix).

We want to show that V ⊆ U , for which it is enough to show that V ∩ U = ∅.

We show that (Kx ∩ Iy) ∩ U = ∅. Then by symmetry the same will be true for Ky ∩ Ix,

and hence for V .

(Kx∩Iy)∩U = (Kx∩Iy∩Kx∩Ky)∪(Kx∩Iy∩Ix∩Iy). But Kx∩Iy∩Kx∩Ky ⊆

Iy ∩Ky = ∅. Similarly, Kx ∩ Iy ∩ Ix ∩ Iy = ∅. 2

Lemma 10.7.2 If K is a regular basis and x, y ∈ Total(A), then l(x, y) = u(x, y).

Proof. Using the notations of the previous proof we want to show that U ⊆ V .

Let us show first that Kx ∪ Ix = Ky ∪ Iy = K. Consider k ∈ K. Since

x ∈ Total(A), if k 6∈ Ix, then k v x. Now from the regularity of K we obtain k � x and

k ∈ Kx. Same for y.

Now, if k 6∈ U , then k 6∈ Kx or k 6∈ Ky. Because of the symmetry it is enough

to consider k 6∈ Kx. Then k ∈ Ix. Then, using k 6∈ U once again, k 6∈ Iy. Then k ∈ Ky.

So we have k ∈ Ky ∩ Ix ⊆ V . 2
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Lemma 10.7.3 ((Vickers-Matthews triangle inequality for upper bounds)) :

u(x, z) ≤ u(x, y) + u(y, z)− u(y, y).

Proof. We want to show 1−W (Kx∩Kz)−W (Ix∩Iz) ≤ 1−W (Kx∩Ky)−W (Ix∩Iy)+

1−W (Ky ∩Kz)−W (Iy ∩Iz)−1+W (Ky)+W (Iy). This is equivalent to W (Kx∩Ky)+

W (Ky ∩Kz) + W (Ix ∩ Iy) + W (Iy ∩ Iz) ≤W (Ky) + W (Iy) + W (Kx ∩Kz) + W (Ix ∩ Iz).

Notice that W (Kx∩Ky)+W (Ky∩Kz) = W (Kx∩Ky∩Kz)+W (Ky∩(Kx∪Kz)),

and the similar formula holds for I’s.

Then the result follows from the following simple facts: W (Kx ∩ Ky ∩ Kz) ≤

W (Kx ∩Kz), W (Ky ∩ (Kx ∪Kz)) ≤W (Ky), and the similar inequalities for I’s. 2

Lemma 10.7.4 Function ρ : A×A→ RI is continuous.

Proof. Monotonicity of ρ is trivial.

Consider a directed set B ⊆ A and some z ∈ A. We have to show that ρ(z,tB) =

tRI{ρ(z, x) | x ∈ B}, which is equivalent to u(z,tB) = inf{u(z, x) | x ∈ B} and

l(z,tB) = sup{l(z, x) | x ∈ B}.

Rewriting this, we want to show that W (Kz∩KtB)+W (Iz∩ItB) = sup{W (Kz∩

Kx) + W (Iz ∩ Ix) | x ∈ B} and W (Kz ∩ ItB) + W (Iz ∩ KtB) = sup{W (Kz ∩ Ix) +

W (Iz ∩Kx)| x ∈ B}. Monotonicity considerations trivially yield both “≥” inequalities,

so it is enough to show “≤” inequalities. In fact, we will show that for any sets C ⊆ A

and D ⊆ A, W (C ∩KtB)+W (D∩ ItB) ≤ sup{W (C ∩Kx)+W (D∩ Ix) | x ∈ B} holds.

It is easy to show that KtB = ∪{Kx | x ∈ B} by showing first that the set

∪{Kx | x ∈ B} is directed and tB = t(∪{Kx | x ∈ B}). Let us prove that ItB =

∪{Ix | x ∈ B}. “⊇” is trivial. Let us prove “⊆”. Assume that k 6∈ ∪{Ix | x ∈ B}, i.e.

∀x ∈ B. k t x exists. It is easy to see that because B is a directed set, {k t x | x ∈ B}

is also directed. Then k v t{k t x | x ∈ B} w tB, implying existence of k t (tB) and,

hence, k 6∈ ItB .

Now consider enumerations of the countable or finite sets KtB and ItB : k1, ...,

kn, ... and k′1, ..., k
′
n, ..., respectively. Define tail sums Sn = w(kn) + w(kn+1) +... and

S′n = w(k′n) + w(k′n+1) + .... Observe that (Sn) and (S′n) converge to 0.
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Pick for every kn some xn ∈ B such that kn ∈ Kxn
. Pick for every k′n some

x′n ∈ B such that k′n ∈ Ix′n . Then using the directness of B, we can for any n pick

such yn ∈ B, that x1, ..., xn, x′1, ..., x
′
n v yn. Then k1, ..., kn ∈ Kyn

and k′1, ..., k
′
n ∈ Iyn

.

It is easy to see that (W (C ∩KtB) + W (D ∩ ItB)) − (W (C ∩Kyn
) + W (D ∩ Iyn

)) =

W (C ∩KtB)−W (C ∩Kyn)+W (D∩ ItB)−W (D∩ Iyn) < Sn +S′n, which can be made

as small as we like. 2

Lemma 10.7.5 If B ⊆ A is Scott open then it is relaxed metric open.

Proof. Consider x ∈ B. Because B is Scott open there is a basic element k ∈ B such that

k � x. We must find ε > 0 such that x ∈ Bx,ε ⊆ B. Let ε = u(x, x) + w(k)/2. Clearly

x ∈ Bx,ε. We claim that Bx,ε ⊆ {y|y � k} ⊆ B. Assume, by contradiction, that y � k is

false. Then k 6∈ Ky and k ∈ Kx. Then W (Kx∩Ky)+W (Ix∩Iy)+w(k) ≤W (Kx)+W (Ix).

Then u(x, y)−w(k) = 1−W (Kx∩Ky)−W (Ix∩Iy)−w(k) ≥ 1−W (Kx)−W (Ix) = u(x, x).

Therefore u(x, y) ≥ u(x, x) + w(k) and thus y 6∈ Bx,ε. 2

10.8 Computability and Continuity

Consider an effective algebraic Scott domain A and its computable element x. We recall

that this means that Kx is recursively enumerable (Section 5.4). It is easy to show

that in this case Ix must also be recursively enumerable. However, as we discussed in

Section 5.4, one almost never should expect them to be recursive.

The actual computation of ρ(x, y) goes as follows. Start with [0, 1] and go along

the recursive enumerations of Kx, Ky, Ix, and Iy. Whenever we discover that some k

occurs in both Kx and Ky, or in both Ix and Iy, subtract w(k) from the upper boundary.

Whenever we discover that some k occurs in both Kx and Iy, or in both Ix and Ky,

add w(k) to the lower boundary. If this process continues long enough, [l(x, y), u(x, y)]

is approximated as well as desired.

However, there is no general way to compute a better lower estimate for u(x, y)

than l(x, y), or to compute a better upper estimate for l(x, y) than u(x, y). Consequently,

there is no general way to determine how close is the convergence process to the actual
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values of l(x, y) and u(x, y), except that we know that u(x, y) is not less than the currently

computed lower bound, and l(x, y) is not greater than the currently computed upper

bound. Of course, for large x and y this knowledge might provide a lot of information,

and if the basis of our domain is regular, for total elements x and y this knowledge

provides us with precise estimates — i.e. if the basis is regular, then the resulting

classical metric on Total(A) can be nicely computed.

The computational situation is very different with regard to quasi-metrics. Con-

sider u(x, y) = 1 −W (Kx ∩ Ky) and d(x, y) = u(x, y) − u(x, x) = W (Kx \ Ky). This

is a quasi-metric in the style of [50, 33], and it yields a Scott topology [12, 13]. How-

ever, as discussed in [12, 13], typically Kx \Ky is not recursive. Moreover, one should

not expect Kx \Ky or its complement to be recursively enumerable. This precludes us

from building a generally applicable method computing d(x, y) and illustrates that it is

computationally incorrect to subtract one upper bound from another.

10.9 Axioms of Partial Metrics and Functoriality

10.9.1 Should the Axioms of Partial Metrics Hold?

Consider relaxed metric ρ and its upper part u. Should we expect function u to satisfy the

axioms of partial metrics? Example 10.1.1 describes a natural relaxed metric on interval

numbers, where u is not a partial metric. Function u gives a better upper estimate of

the “ideal” distance between interval numbers, than the partial metric p([a, b], [c, d]) =

max(b, d) − min(a, c) described in [39]. For example, u([0, 2], [1, 1]) = 1, which is what

one expects — if we know that one of the numbers is somewhere between 0 and 2, and

another number equals 1, then we know that the distance between them is no greater

than 1. However, p([0, 2], [1, 1]) = p([0, 2], [0, 2]) = 2.

Now we describe two situations when the axioms of partial metrics are justified.

Consider again function d(x, y) = u(x, y) − u(x, x) from Section 10.8. Vickers notes

in [54] that the triangle inequality d(x, z) ≤ d(x, y) + d(y, z) is equivalent to u(x, z) ≤

u(x, y) + u(y, z)− u(y, y), and d(x, y) ≥ 0 is equivalent to u(x, x) ≤ u(x, y). This means
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that function u is a partial metric if and only if function d is a quasi-metric.

Another justification comes from the consideration of the proof of Lemma 10.7.3.

Whenever the upper part u(x, y) of a relaxed metric is based on common information

shared by x and y yielding a negative contribution to the distance (we subtract the weight

of common information from the universal distance 1 in this chapter), both u(x, z) ≤

u(x, y) + u(y, z) − u(y, y) and u(x, x) ≤ u(x, y) should hold. As we shall see in full

generality in the next chapter, when u(x, y) = 1 − µ(Common information between x

and y), axioms of partial metrics hold.

However, to specify function u in Example 10.1.1, we use information about x

and y, which cannot be thought of as common information shared by x and y. In such

case we still expect a relaxed metric ρ, but its upper part u does not have to satisfy the

axioms of partial metrics.

10.9.2 Partial Metrics and Functoriality

Here I would like to emphasize the utilitarian value of these axioms, i.e. certain useful

properties which are easy to establish in the presence of these axioms. In all cases these

considerations are closely related to the following series of open problems: What are the

necessary and/or sufficient conditions for relaxed/partial metrics on various classes of

domains in order for all Scott open sets to be relaxed metric open?

10.9.2.1 Open Balls Should be Open Sets

The strong Vickers–Matthews triangle inequality, u(x, z) ≤ u(x, y) + u(y, z)− u(y, y), is

helpful in the proof that an open ball is a relaxed open set.

The proof goes as follows. Consider y ∈ Bx,ε. We need to find δ > 0, such

that By,δ+u(y,y) ⊆ Bx,ε, i.e. ∀z. u(y, z) ≤ u(y, y) + δ ⇒ u(x, z) < ε. Using u(x, z) ≤

u(x, y) + u(y, z)− u(y, y) and ε− u(x, y) > 0 we take δ = (ε− u(x, y))/2 and obtain the

desired result. This is closely related to the fact noted by Vickers, that for d(x, y) =

u(x, y) − u(x, x), d(x, z) ≤ d(x, y) + d(y, z) ⇔ u(x, z) ≤ u(x, y) + u(y, z) − u(y, y). The

ordinary triangle inequality u(x, z) ≤ u(x, y) + u(y, z) is not enough here, because we

83



are looking for the ball around y with the radius u(y, y) + δ and not just δ.

10.9.2.2 Functoriality

One of the open issues in the field remains to develop a functorial approach to relaxed

metrics. This approach should facilitate our abilities to both define canonical distances

on domains and to compute these distances at a reasonable cost.

This method is to define reasonable relaxed metrics on some specific elementary

domains, and then, given reasonable structures (relaxed metrics or, sometimes, measures)

on domains A, B, define relaxed metric on domains A × B, A → B, etc. The natural

candidates for relaxed metric on A×B and A→ B are

ρA×B(〈x, y〉, 〈x′, y′〉) = α · ρA(x, x′) + β · ρB(y, y′), α, β > 0, α + β = 1

ρA→B(f, g) =
∫

x∈A

ρB(f(x), g(x))dµx.

We also hope to be able to extend this approach to reflexive domains and to obtain some

invariance properties of ρ in the process.

In all cases we would like to ensure that relaxed metric topology and Scott

topology coincide. In particular, in order for Scott open sets to be relaxed metric open

it is necessary (not sufficient) that u(x, x) ≥ u(x, y)⇒ x v y.

However, for general relaxed metrics it is easy to come up with examples, when

for both A and B uA(x, x) ≥ uB(x, y) ⇒ x v y and uB(x′, x′) ≥ uB(x′, y′) ⇒ x′ v y′,

but uA×B(〈x, x′〉, 〈x, x′〉) ≥ uA×B(〈x, x′〉, 〈y, y′〉) 6⇒ (x v y&x′ v y′), and the similar

situation takes place for A → B. However, the strong form of the axiom of small self-

distances, u(x, x) ≤ u(x, y) (namely, x v y ⇒ u(x, x) = u(x, y), x 6v y ⇒ u(x, x) <

u(x, y)) seems to eliminate these problems.
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10.10 Applications and Open Problems

Let us briefly state where we stand with regard to the applications to programs. We

are able to introduce relaxed metrics on a class of domains sufficiently large for practical

applications in the spirit of [53].

For example, consider X = [[while B do S]], and the sequence of programs, P1 =

loop; ...;PN = if B then S;PN−1else skip endif; .... Define XN = [[PN ]]. Typically

XN−1 v XN and X = tXN hold. We agreed that the distances between programs will

be distances between their meanings. Assume that M ≤ N . Then regardless of specific

weights, u(PM , PM ) = u(PM , PN ) = u(PM , P ), also u(PM , PM ) ≥ u(PN , PN ) ≥ u(P, P ),

and u(P, P ) = inf u(PN , PN ). Of course, none of these distances has to be zero.

However, we do not know yet how to build relaxed distances so that not only

nice convergence properties are true, but also that distances between particular pairs of

programs “look right” — a notion, which is more difficult to formalize, than convergence.

Also, we compute these distances via recursive enumeration now, and a more efficient

scheme is needed.

Hence we think that the key open problems for relaxed distances are the same as

for measures and integrals, namely interrelated problems of how to compute them quickly

and how to define canonical valuations and relaxed distances on functional spaces and

reflexive domains.

In Subsection 10.9.2 given a measure on A and a relaxed metric on B, we de-

fined a functorial relaxed metric on [A→ B]. Hence the problem of functorial definitions

for distances and measures are interrelated, and in order to approach higher-order func-

tional spaces and reflexive domains for relaxed metrics, we should start with finding an

appropriate construction for measures on [A→ B].

It should be noted here that since we are going to distinguish functions topo-

logically by integrating them over A, we need these measures to be based on strongly

non-degenerate valuations.
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Chapter 11

Obtaining Generalized

Distances from Valuations

In this chapter we continue to present our joint results with Svetlana Shorina [15, 16].

In the previous chapter we introduced a construction of partial metrics based

on the mechanism of common information between elements x and y bringing negative

contribution to u(x, y). This construction was based on assigning finite weights to ba-

sic elements and gave topologically meaningful relaxed metrics for all continuous Scott

domains with countable bases. For such domains with regular bases (which included all

algebraic Scott domains) this construction gave relaxed metrics which “behaved well”

on the total elements of the domain.

Here we introduce a general method of defining partial and relaxed metrics via

information about elements for all dcpo’s via mechanism of µInfo-structures.

Then we show how to obtain such a µInfo-structure from a CC-valuation for

any continuous Scott domain. Since we know, how to construct a CC-valuation for any

continuous dcpo with countable basis, this method of constructing partial and relaxed

metrics via CC-valuations and the resulting µInfo-structures works for all continuous

Scott domains with countable bases.
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11.1 Partial and Relaxed Metrics via Information

11.1.1 µInfo-structures

Assume that there is a set I representing information about elements of a dcpo A. We

choose a ring,M(I), of admissible subsets of I and introduce a measure-like structure, µ,

onM(I). We associate a set, Info(x) ∈M(I), with every x ∈ A, and call Info(x) a set

of (positive) information about x. We also would like to consider negative information

about x, Neginfo(x) ∈ M(I), — intuitively speaking, this is the information which

cannot become true about x, when x is arbitrarily increased.

Definition 1.1. Given a dcpo A, the tuple of (A, I,M(I), µ, Info,Neginfo)

is called a µInfo-structure on A, if M(I) ⊆ P(I) — a ring of subsets closed with

respect to ∩, ∪, \ and including ∅ and I, µ : M(I) → [0, 1], Info : A → M(I), and

Neginfo : A→M(I), and the following axioms are satisfied:

1. (VALUATION AXIOMS)

(a) µ(I) = 1, µ(∅) = 0;

(b) U ⊆ V ⇒ µ(U) ≤ µ(V );

(c) µ(U) + µ(V ) = µ(U ∩ V ) + µ(U ∪ V );

2. (Info AXIOMS)

(a) x v y ⇔ Info(x) ⊆ Info(y);

(b) x < y ⇒ Info(x) ⊂ Info(y);

3. (Neginfo AXIOMS)

(a) Info(x) ∩Neginfo(x) = ∅;

(b) x v y ⇒ Neginfo(x) ⊆ Neginfo(y);

4. (STRONG RESPECT FOR TOTALITY)

x ∈ Total(A)⇒ Info(x) ∪Neginfo(x) = I;
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5. (SCOTT CONTINUITY OF THE INDUCED RELAXED METRIC)

if B is a directed subset of A and y ∈ A, then

(a) µ(Info(tB) ∩ Info(y)) = supx∈B(µ(Info(x) ∩ Info(y)),

(b) µ(Info(tB) ∩Neginfo(y)) = supx∈B(µ(Info(x) ∩Neginfo(y)),

(c) µ(Neginfo(tB) ∩ Info(y)) = supx∈B(µ(Neginfo(x) ∩ Info(y)),

(d) µ(Neginfo(tB) ∩Neginfo(y)) = supx∈B(µ(Neginfo(x) ∩Neginfo(y));

6. (SCOTT OPEN SETS ARE RELAXED METRIC OPEN)

for any (basic) Scott open set U ⊆ A and x ∈ U , there is an ε > 0, such that

∀y ∈ A. µ(Info(x))− µ(Info(x) ∩ Info(y)) < ε⇒ y ∈ U .

We will also consider deficient µInfo-structures, when the strong respect for

totality axiom is not imposed.

In terms of lattice theory, µ is a (normalized) valuation on a latticeM(I). The

consideration of unbounded measures is beyond the scope of this work, and µ(I) = 1 is

assumed for convenience. Axioms relating v and Info are in the spirit of information

systems approach [48], although we are not considering any inference structure over I

in this chapter.

The requirements for negative information are relatively weak, because it is quite

natural to have ∀x ∈ A. Neginfo(x) = ∅ if A has the top element.

The axiom that for x ∈ Total(A), Info(x)∪Neginfo(x) = I, is desirable because

indeed, if some i ∈ Info(x) does not belong to Info(x) and x can not be further increased,

then by our intuition behind Neginfo(x), i should belong to Neginfo(x). However, this

axiom might be too strong and will be further discussed later.

The last two axioms are not quite satisfactory — they almost immediately imply

the properties, after which they are named, but they are complicated and might be

difficult to establish. We hope, that these axioms will be replaced by something more

tractable in the future. One of the obstacles seems to be the fact in some valuable

approaches (in particular, in this chapter) it is not correct that x1 v x2 v · · · implies

that Info(ti∈Nxi) =
⋃

i∈N Info(xi).
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The nature of these set-theoretical representations, I, of domains may vary:

one can consider sets of tokens of information systems, powersets of domains bases,

or powersets of domains themselves, custom-made sets for specific domains, etc. The

approach via powersets of domain bases of the previous chapter can be thought of as a

partial case of the approach via powersets of domains themselves adopted in this chapter.

11.1.2 Partial and Relaxed Metrics via µInfo-structures

Define the (upper estimate of the) distance between x and y from A as u : A×A→ R−:

u(x, y) = 1− µ(Info(x) ∩ Info(y))− µ(Neginfo(x) ∩Neginfo(y)).

I.e. the more information x and y have in common the smaller is the distance between

them. However a partially defined element might not have too much information at all,

so its self-distance u(x, x) = 1− µ(Info(x))− µ(Neginfo(x)) might be large.

It is possible to find information which will never made it into Info(x)∩ Info(y)

or Neginfo(x) ∩ Neginfo(y) even when x and y are arbitrarily increased. In particular,

Info(x)∩Neginfo(y) and Info(y)∩Neginfo(x) represent such information. Then we can

introduce the lower estimate of the distance l : A×A→ R+:

l(x, y) = µ(Info(x) ∩Neginfo(y)) + µ(Info(y) ∩Neginfo(x)).

The proof of Lemma 10.7.1 is directly applicable and yields (Info(x)∩Neginfo(y))∪

(Info(y) ∩ Neginfo(x)) ⊆ I \ ((Info(x) ∩ Info(y)) ∪ (Neginfo(x) ∩ Neginfo(y))) implying

l(x, y) ≤ u(x, y). Thus we can form an induced relaxed metric, ρ : A × A → RI ,

ρ = 〈l, u〉, with a meaningful lower bound.

Now certain properties of partial and relaxed metrics can be established.

1. u(x, x) ≤ u(x, y).

Indeed, axiom U ⊆ V ⇒ µ(U) ≤ µ(V ) implies µ(Info(x) ∩ Info(y)) ≤ µ(Info(x)),

µ(Neginfo(x) ∩Neginfo(y)) ≤ µ(Neginfo(x)), yielding u(x, x) ≤ u(x, y).

89



2. u(x, z) ≤ u(x, y) + u(y, z)− u(y, y).

The proof of Lemma 10.7.3 goes through.

The symmetry u(x, y) = u(y, x) and l(x, y) = l(y, x) is obvious. Another helpful

fact is

3. x v y ⇒ u(x, x) = u(x, y).

We are using the axiom x v y ⇒ Info(x) ⊆ Info(y), which implies Info(x) ∩

Info(y) = Info(x), and the same for Neginfo.

4. x 6v y ⇒ u(x, x) < u(x, y).

This follows from the following fact:

5. Any Scott open set is relaxed metric open.

This, in turn, follows at once from the last axiom of µInfo-structure and µ(Neginfo(x)∩

Neginfo(y)) ≤ µ(Neginfo(x)).

6. Any relaxed metric open set is Scott open.

This follows at once from the following property:

7. The induced relaxed metric is a Scott continuous function.

This also follows immediately from the corresponding axiom of µInfo-structure.

Thus, the following theorem is proved (cf. Theorem 10.6.1). Observe, that the

strong respect for totality axiom is NOT used in the proof.

Theorem 11.1.1 Let A be a dcpo with a (possibly deficient) µInfo-strcuture and the

induced relaxed metric ρ = 〈l, u〉. Then the function u is a partial metric, the function ρ

is a Scott continuous relaxed metric, and the relaxed metric topology coincides with the

Scott topology.

Now let us assume that our µInfo-structure is not deficient.
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Due to the axiom ∀x ∈ Total(A). Info(x) ∪ Neginfo(x) = I, the proof of

Lemma 10.7.2 would go through, yielding

x, y ∈ Total(A)⇒ l(x, y) = u(x, y)

and allowing to obtain the following theorem (cf. Theorem 10.6.2).

Theorem 11.1.2 Let A be a dcpo with a µInfo-strcuture and the induced relaxed metric

ρ = 〈l, u〉. Then for all x and y from Total(A), l(x, y) = u(x, y). Consider µ : Total(A)×

Total(A)→ R, µ(x, y) = l(x, y) = u(x, y). Then (Total(A), µ) is a metric space, and its

metric topology is the subspace topology induced by the Scott topology on A.

However, in the previous chapter x ∈ Total(A)⇒ Info(x)∪Neginfo(x) = I holds

under an awkward condition of the regularity of the basis. While bases of algebraic Scott

domains and of continuous lattices can be made regular, there are important continuous

Scott domains, which cannot be given regular bases. In particular, in RI no element,

except for ⊥, satisfies the condition of regularity, hence a regular basis cannot be provided

for RI .

The achievement of the construction to be described in the Section 11.1.4 is that

by removing the reliance on the weights of non-compact basic elements, it eliminates the

regularity requirement and implies x ∈ Total(A) ⇒ Info(x) ∪ Neginfo(x) = I for all

continuous Scott domains equipped with a CC-valuation (which is built above for all

continuous Scott domains with countable bases) where Info(x) and Neginfo(x) are as

described below in the Subsection 11.1.4.

However, it might still be fruitful to consider replacing the axiom ∀x ∈ Total(A).

Info(x)∪Neginfo(x) = I by something like ∀x ∈ Total(A). µ(I\(Info(x)∪Neginfo(x))) =

0.

11.1.3 A Previously Known Construction

Here we recall a construction from the previous chapter based on a generally non-co-

continuous valuation of Subsection 9.2.1. We will reformulate it in our terms of µInfo-
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structures. In the previous chapter it was natural to think that I = K. Here we

reformulate that construction in terms of I = A, thus abandoning the condition x ∈

Total(A)⇒ Info(x) ∪Neginfo(x) = I altogether.

Define Ix = {y ∈ A | {x, y} is unbounded}, Px = {y ∈ A | y � x} (cf. Ix = {k ∈

K | {k, x} is unbounded}, Kx = {k ∈ K | k � x} in [11]).

Define Info(x) = Px, Neginfo(x) = Ix. Consider a valuation µ of Subsec-

tion 9.2.1: for any S ⊂ I = A, µ(S) =
∑

k∈S∩K w(k). µ is a continuous strongly

non-degenerate valuation, but it is not co-continuous unless K consists only of compact

elements.

Because of this we cannot replace an inconvenient definition of Info(x) = Px by

Info(x) = Cx = {y ∈ A | y v x} ( which would restore the condition x ∈ Total(A) ⇒

Info(x) ∪ Neginfo(x) = A) as µ(Ck) would not be equal to supk′�k µ(Ck′) if k is a

non-compact basic element, leading to the non-continuity of the partial metric u(x, y).

Also the reliance on countable system of finite weights excludes such natural

partial metrics as metric u : R−
[0,1]×R−

[0,1] → R−, where R−
[0,1] is the set [0, 1] equipped

with the dual partial order v=≥, and u(x, y) = max(x, y). We rectify all these problems

in the next Subsection.

11.1.4 Partial and Relaxed Metrics via CC-valuations for Con-

tinuous Scott Domains

Assume that there is a CC-valuation µ(U) on Scott open sets of a continuous Scott

domain A. Then it uniquely extends to an additive measure µ on the ring of sets

generated by the system of open sets. Define I = A, Info(x) = Cx, Neginfo(x) = Ix.

It is easy to see that valuation, Info, and Neginfo axioms of µInfo-structure hold. We

have x ∈ Total(A) ⇒ Cx ∪ Ix = A. Thus we only need to establish µInfo-structure

axioms of Scott continuity of the induced relaxed metric and Scott open sets

are relaxed metric open in order to prove theorems 11.1.1 and 11.1.2 for our induced

relaxed metric, u(x, y) = 1− µ(Cx ∩Cy)− µ(Ix ∩ Iy), l(x, y) = µ(Cx ∩ Iy) + µ(Cy ∩ Ix).

These axioms are established by the Lemmas below.
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You will also see that for such bare-bones partial metrics, as u(x, y) = 1−µ(Cx∩

Cy), which are nevertheless quite sufficient for topological purposes and for domains with

>, only co-continuity of valuations matters, continuity is not important.

Observe also that since the construction in Section 9.2.1 does form a CC-

valuation for algebraic Scott domains with bases of compact elements, the construction

in the previous chapter can be considered as a partial case of our current construction if

the basis does not contain non-compact elements.

Lemma 11.1.1 Assume that µ is a co-continuous valuation and B is a directed subset

of A. Then µ(CtB ∩Q) = supx∈B(µ(Cx ∩Q)), where Q is a closed or open subset of A.

Remark: Note that continuity of µ is not required here.

Proof. Part A: Let Q be a closed subset of A. Then (Cx ∩ Q, x ∈ B) form

a directed set of closed sets. We need to show that (
⋃

x∈B Cx) ∩Q = CtB ∩ Q, then

the result will follow by co-continuity. “⊆” is trivial. Let us proof “⊇”. Consider

x ∈ CtB ∩ Q. x = tPx; Px = {y ∈ A | y � x} is directed set and Px ⊆ CtB ∩ Q.

However, for ∀y ∈ Px, since y � x and x v tB, ∃z ∈ B. y v z, hence y ∈ Cz ∩Q. Hence

Px ⊆
⋃

z∈B(Cz ∩Q) = (
⋃

z∈B Cz) ∩Q, and x ∈ Px implies x ∈ (
⋃

z∈B Cz) ∩Q.

Part B: If Q is an open set, then µ(Cx ∩Q) = µ(Cx)−µ(Cx \Q); µ(CtB ∩Q) =

µ(CtB)−µ(CtB \Q). The non-trivial part is to show µ(CtB ∩Q) ≤ supx∈B µ(Cx ∩Q).

This follows from µ(CtB) = supx∈B µ(Cx) by Part A and µ(CtB\Q) ≥ supx∈B µ(Cx\Q)

by monotonicity of µ. 2

Lemma 11.1.2 Assume that µ is a continuous valuation and B is a directed subset of

A. Then µ(ItB ∩Q) = supx∈B(µ(Ix ∩Q)), were Q is an open or closed subset of A.

Remark: Co-continuity is not needed here.

Proof. During the proof of Lemma 10.7.4 it was established that ItB =
⋃

x∈B Ix

(think about k ∈ A and observe that that proof goes through).

Part A: If Q is an open set, ItB ∩ Q = (
⋃

x∈B Ix) ∩ Q =
⋃

x∈B(Ix ∩ Q) and

µ(ItB ∩Q) = supx∈B(µ(Ix ∩Q)) is a direct consequence of continuity of µ.
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Part B: If Q is closed, let us think about µ(I ∩ Q) as µ(I) − µ(I \ Q), where

both I and I \Q are open sets. The rest is similar to Part B of the proof of the previous

Lemma. 2

Lemma 11.1.3 Assume that µ is a strongly non-degenerate valuation. Then the µInfo-

structure axiom Scott open sets are relaxed metric open holds.

Remark: Neither continuity, nor co-continuity are required, and even strong

non-degeneracy condition can be probably be made weaker (see the next section).

Proof. Consider a Scott open set U and x ∈ U . We would like to find δ > 0,

such that µ(Cx) − µ(Cx ∩ Cy) < δ ⇒ y ∈ U (and hence, Bx,δ+u(x,x) ⊆ U). Using

x = tPx, where Px = {y | y � x} is a directed set, obtain ∃y � x. y ∈ U (this includes

the case of compact x, y = x). Consider a Scott open set {z ∈ A | y � z} 3 x and a

Scott open set A \ Cx. Then x 6∈ (A \ Cx), hence (A \ Cx) ∪ {z ∈ A | y � z} ⊃ (A \ Cx)

and by strong non-degeneracy µ((A \ Cx) ∪ {z ∈ A | y � z}) − µ(A \ Cx) = ε > 0. We

take δ = ε and prove that µ(Cx) − µ(Cx ∩ Cz) < δ implies y v z, and thus z ∈ U .

Indeed, assume y 6v z. Then we have that y 6∈ Cz, thus {z | y � z} ⊆ (A \ Cz), thus

µ((A \ Cx) ∪ (A \ Cz)) ≥ µ(A \ Cx) + ε, implying µ(Cx)− µ(Cx ∩ Cz) ≥ δ. 2

It is helpful to visualize the situation of this section via the following pictures.

They show sets Cx and Ix, show the “area” accounting for l(x, y) as shaded with large

dots, the “area” accounting for u(x, y) as shaded with all dots (large and small), and

show why l(x, y) = u(x, y), when x, y ∈ Total(A).
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11.2 Examples and Non-degeneracy Issues

In this section we show some examples of “nice” partial metrics, based on valuations

for vertical and interval domains of real numbers. Some of these valuations are strongly
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non-degenerate, while others are not, yet all examples are quite natural.

Consider the example from Subsection 9.2.2. The partial metric, based on

the strongly non-degenerate valuation µ′ of that example would be u′(x, y) = (1 −

min(x, y))/(1 + ε), if x, y > 0, and u′(x, y) = 1, if x or y equals to 0. However, another

nice valuation, µ′′, can be defined on the basis of µ of Subsection 9.2.2: µ′′((x, 1]) =

µ((x, 1]) = 1 − x, µ′′([0, 1]) = 1. µ′′ is not strongly non-degenerate, however it yields

nice partial metric u′′(x, y) = 1−min(x, y), yielding the Scott topology.

Now we consider several valuations and distances on the domain of interval

numbers located within the segment [0, 1]. This domain can be thought of as a triangle

of pairs 〈x, y〉, 0 ≤ x ≤ y ≤ 1. Various valuations can either be concentrated on

0 < x ≤ y < 1, or on x = 0, 0 ≤ y ≤ 1 and y = 1, 0 ≤ x ≤ 1, or, to insure

non-degeneracy, on the both of these areas with an extra weight at 〈0, 1〉.

The classical partial metric u([x, y], [x′, y′]) = max(y, y′) − min(x, x′) results

from the valuation accumulated at x = 0, 0 ≤ y ≤ 1, and y = 0, 0 ≤ x ≤ 1, namely

µ(U) = (Length({x = 0, 0 ≤ y ≤ 1} ∩ U) + Length({y = 1, 0 ≤ x ≤ 1} ∩ U))/2. Partial

metrics denerated by strongly non-degenerate valuations contain quadratic expressions.

It is our current feeling, that instead of trying to formalize weaker non-degeneracy

conditions, it is often more fruitful to change a µInfo-structure. In particular, one can

build a µInfo-structure based on I = [0, 1]× [0, 1] in the situation described above.
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Chapter 12

Negative Information and

Tolerances

In this chapter we present our later joint results with Svetlana Shorina [17, 14]. In

the previous chapter we showed how to obtain such a µInfo-structure from a CC-

valuation for any continuous Scott domain. Certain pathologies in the behavior of

Ix = {y ∈ A | {x, y} is unbounded} precluded us from extending this method beyond

bounded complete domains.

In this chapter, we obtain meaningful Scott continuous relaxed metrics for con-

tinuous dcpo’s by replacing Ix with Neginfo(x) = Int(Jx), where Jx = {y ∈ A |x ∈

Int(Iy)}. This result can be understood in terms of interplay between negation duality

and Stone duality. Since we know how to construct a CC-valuation for any continuous

dcpo with countable basis, this method of constructing partial and relaxed metrics via

CC-valuations and the resulting µInfo-structures works for all continuous dcpo’s with

countable bases.

Escardo [21, 52] defined a topological space A to be weakly Hausdorff, if its

consistency relation is closed. The consistency relation is given by formula x ↑ y =

{〈x, y〉 | ∃z ∈ A. x v z&y v z}, where v is the specialization order of A.

A continuous dcpo with Scott topology is weakly Hausdorff, if and only if neg-
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ative information Ix is observable, e.g. Scott open, due to the fact that the relation

{〈x, y〉 | y ∈ Ix} is exactly the complement of the consistency relation.

The technique of considering Neginfo(x) = Int(Jx) works especially well, when

a continuous dcpo A satisfies the Lawson condition — the relative Scott and Lawson

topologies on Total(A) are equal. We obtain that the Lawson condition is equivalent to

the property ∀x ∈ Total(A). Ix = Jx. This will imply that when the Lawson condition

holds, an induced classical metric on Total(A) results.

Since the Lawson condition is equivalent to the formula ∀x ∈ Total(A). Ix = Jx,

which is a weakening of I = J , which is, in turn, equivalent to A being weakly Hausdorff,

we call the spaces satisfying the Lawson condition very weakly Hausdorff.

12.1 Tolerances and a Smyth Conjecture

Recently Mike Smyth [52] and Julian Webster [58] advanced the approach in which

tolerance is considered not as an alternative to standard topology, but as a structure

complementary to topology. In particular, it seems to be fruitful to equip Scott domains

with tolerances.

Sections 12.6 and 12.7 make a small contribution to this emerging theory.

Smyth [52] defines a tolerance as a reflexive symmetric relation following Poincare

and Zeeman. He defines a topological tolerance space as a topological space equipped

with a tolerance relation closed in the product topology.

For a weakly Hausdorff space, ↑ is the least closed tolerance.

The set Ix = {y ∈ A | {x, y} is unbounded} is an observable continuous repre-

sentation of negative information about x ∈ A for a weakly Hausdorff continuous dcpo A

with the Scott topology. We will see in Section 12.4 that, when A is not weakly Hausdorff

the largest continuous approximation of Ix is represented by Jx = {y ∈ A |x ∈ Int(Iy)},

and the largest observable continuous representation of Ix is represented by J ′x = Int(Jx).

Smyth conjectured, that J or J ′ is closely related to the least symmetric closed

tolerance on A. In this chapter we establish that, indeed, {〈x, y〉 | y ∈ J ′x} is the comple-

ment of this tolerance.
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We also establish a relationship between this tolerance and lower bounds of

relaxed metrics on A.

12.2 Overview of the Chapter

12.2.1 Negation Duality and Problems with Ix

Certain pathologies in the behavior of Ix do not allow us to use the formula Neginfo(x) =

Ix = {y ∈ A | {x, y} is unbounded} when A is not bounded complete. It is convenient to

use negation duality, x ∈ Iy ⇔ y ∈ Ix, when analyzing the behavior of Ix. Specifically,

one can consider directed sets B ⊆ A, and by considering x = tB and x = b ∈ B, obtain

the following Lemma:

Lemma 12.2.1 For any dcpo A, (∀y ∈ A. Iy is Scott open)⇔ (∀B ⊆ A.B is directed⇒

ItB =
⋃

b∈B Ib) .

Proof. ⇒. Consider y ∈ ItB . y ∈ ItB ⇔ tB ∈ Iy. If Iy is Scott open,

∃b ∈ B. b ∈ Iy, and b ∈ Iy ⇔ y ∈ Ib.

⇐. Consider directed B, such that tB ∈ Iy. tB ∈ Iy ⇔ y ∈ ItB . Condition

ItB =
⋃

b∈B Ib implies that ∃b ∈ B. y ∈ Ib, and y ∈ Ib ⇔ b ∈ Iy. 2

One can informally restate this, by saying that all Iy are (Scott) observable [51],

if and only if I is a Scott continuous function A→ P(A).

We will see that for some continuous dcpo’s certain Iy’s are not Scott open.

This would be possible to tolerate, since, as we will see later, co-continuity of valuations

allows to extend those valuations to Alexandrov open sets, and any Iy is still Alexandrov

open. However, the corresponding breakdown of equality ItB =
⋃

b∈B Ib for directed sets

B cannot be tolerated, because it tends to lead to the loss of Scott continuity for the

resulting relaxed metrics.

We could have replaced Ix with Int(Ix) (here and everywhere in this chapter,

interiors are being taken in Scott topology), to rectify the problem of Ix being not Scott

open, but this does nothing to fix the broken continuity property. Somewhat surprisingly,
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the negation duality helps us to resolve this problem.

12.2.2 Negation Duality and Stone Duality

We consider equality Ix = {y ∈ A |x ∈ Iy}, which is just another way to state the

negation duality. Then, instead of taking Int(Ix), we consider Jx = {y ∈ A |x ∈ Int(Iy)}.

Then the continuity property for the resulting relaxed metric will be restored. It is going

to be technically convenient to replace Ix not with Jx, but with Int(Jx), but we do not

think that this feature is principal.

We will see that the reasons for Jx to work in this situation can be best under-

stood in terms of Stone duality. In particular, the map y 7→ Int(Iy) gives rise to a map of

the generators ↑{y} of the free frame of Scott open sets of the powerset of A (ordered by

inclusion, the original ordering on A is ignored) to the frame of open sets of the domain

A. Function x 7→ Jx turns out to be a Scott continuous function A → P(A), which is

dual to the function O(P(A))→ O(A) obtained by extending map ↑{y} 7→ Int(Iy) onto

the frame O(P(A)). We should emphasize here, that what is going on in this chapter is

a rather subtle interplay of two different dualities — negation duality and Stone duality

— none of which seems to be reducible to another.

We will also see, that the function x 7→ Jx is the largest “negative” Scott contin-

uous function A→ P(A), where the powerset of A, P(A), is ordered by the set-theoretic

inclusion. This means that if f : A → P(A) is another Scott continuous function, such

that for all x ∈ A, f(x) ⊆ Ix, then for all x ∈ A, f(x) ⊆ Jx.

12.2.3 Lawson Condition

In general we only get deficient µInfo-structures via the use of Neginfo(x) = Jx or

Neginfo(x) = Int(Jx). Namely, the totality property does not hold in general, and thus

we still do not get an induced metric on Total(A). However, in this situation it helps

to impose the Lawson condition, that relative Scott and Lawson topologies on Total(A)

are equal.

The Lawson condition was introduced in [37], and is widely used lately. As
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Lawson writes in the Introduction to [37], “this turns out to be a very fruitful notion that

permit great generality, but at the same time permits the derivation of many important

structure results”. This condition is now a standard part of the notion of a computational

model for a topological space [22].

In this chapter, we present two equivalent formulations of the Lawson condition:

∀x ∈ A. Ix ∩ Total(A) = Int(Ix) ∩ Total(A) and ∀x ∈ Total(A). Jx = Ix.

The second of these equivalent formulations implies that if the Lawson condition

holds for the domain A and, hence, for any maximal element x, Int(Jx) = Jx = Ix, then

the totality property, Cx ∪ Neginfo(x) = A, holds, and the induced metric on Total(A)

results. Of course, the resulting metric topology is the same as relative Scott and Lawson

topologies on Total(A).

12.2.4 Polish Spaces

Lawson has shown in [37], that for every continuous dcpo A with countable basis, Lawson

condition implies that Total(A) is a Polish space, i.e. that it is homeomorphic to a

complete, separable metric space.

However, since completeness of metric spaces is not a topological invariant, this

does not mean that metrics obtained by our present methods have to be complete.

Indeed, our present methods, based on assignment of converging systems of finite weights

for the case of algebraic domains, yield a non-complete metric on Total(E′) for the

domain E′ of Section 12.5.

This raises a lot of open questions, ranging from the question of when our con-

struction yields a complete metric space to the question of whether methods of Edalat

and Heckmann, used to approximate complete metric spaces (see [27] for the variant of

their approach using partial metrics and, thus, closest to our methods), can be extended

to describe certain non-complete metric spaces, like an open interval of the real line or

set {1/2, 1/4, 1/8, . . .}.
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12.2.5 Historical Remarks

Bob Flagg noted, that our results from Section 12.3 can be generalized to continuous

dcpo’s with compact Lawson topology. Mike Smyth observed that this is a corollary of

the following two facts. The first fact is that the conditions that all Ix are Scott open,

that I = J , and that the continuous dcpo is weakly Hausdorff are equivalent. The second

fact is that continuous dcpo’s with compact Lawson topology are weakly Hausdorff [52].

Since I = J is equivalent to the space in question being weakly Hausdorff, and

since the Lawson condition can be reformulated as Ix = Jx for maximal x, we can

offer an alternative name for the spaces, satisfying the Lawson condition — very weakly

Hausdorff spaces.

Using this terminology, we can say that one of the discoveries of this chapter

is that continuous dcpo’s do not have to be weakly Hausdorff to be satisfactorily re-

laxed metrizable by our methods, but it is enough to require that they be very weakly

Hausdorff.

12.2.6 Structure of the Chapter

In Section 12.3 we show that the old formulas, based on Ix, work for the class of coherently

continuous dcpo’s with countable basis, because Ix’s are Scott open for this class of

domains.

In Section 12.4 we analyze the pathologies of behavior of Ix on a specific example.

We then study the properties of Jx, which serves as a replacement for Ix, and explain

those properties from the viewpoint of Stone duality.

In Section 12.5 we find equivalent formulations of the Lawson condition and use

these formulations to establish the totality property of the resulting µInfo-structures

with its ramifications for the induced metrics on Total(A).

In Section 12.6 we talk about tolerances and prove the Smyth Conjecture.

In Section 12.7 we establish that for the relaxed metrics defined above, x 6∼ y if

and only if l(x, y) 6= 0, and build a continuous family of tolerances.
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12.3 When Ix Behaves Well

In this section we study cases, when for all x ∈ A, Ix is Scott open, or, equivalently,

when for all directed B ⊆ A, ItB =
⋃

x∈B Ix. We already know, that this situation takes

place for continuous Scott domains.

Another class of domains, for which these properties can be established, is the

class of coherently continuous dcpo’s with countable basis. The term “coherence” here

is understood in the weak sense of [1] (weaker, than bounded completeness), and not in

the strong sense of [26] (stronger, than bounded completeness).

Definition 3.1. We say that a continuous dcpo A with the basis K is coherently

continuous, if for any two basic elements k, k′ ∈ K, the set of their minimal upper

bounds, MUB(k, k′), is finite, and for any x ∈ A, if k v x and k′ v x, then there is

k′′ ∈ MUB(k, k′), such that k′′ v x.

Theorem 12.3.1 If A is a coherently continuous dcpo with countable basis K, then for

any x ∈ A, Ix is open.

Proof. Consider y ∈ Ix. Since the space has a countable basis, we only need to show,

that if there is a sequence of basic elements, k1 v k2 v . . ., such that y = tki, then some

ki belongs to Ix.

By contradiction, assume that this is not the case. Then for all i, ki and x have

an upper bound. Using the presence of a countable basis again, approximate x with a

sequence of basic elements as well: l1 v l2 v . . ., x = tli. Then for all i, ki and li have

an upper bound.

Now we are going to build the sequence of (not necessarily basic) elements,

u1 v u2 v . . ., such that for all i, ki v ui and li v ui. Then tui would be an upper

bound of x and y, yielding the desired contradiction.

Consider an element v ∈ MUB(ki, li). Define the height of v as maximal j, such

that there is w ∈ MUB(kj , lj), such that v v w. If there is no such maximal natural

number, we say that v is of infinite height. Using coherence condition, it is easy to see,

that there is an element u1 ∈ MUB(k1, l1) of infinite height. Now consider only elements
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v ∈ MUB(k2, l2), such that u1 v v. Using coherence condition, it is easy to see once

again, that there is an element u2 ∈ MUB(k2, l2) of infinite height, such that u1 v u2.

Continuing this process, we obtain the desired sequence. 2

Therefore, one can use Nx = Ix in order to obtain all results of the previous

section not only for continuous Scott domains, but also for coherently continuous dcpo’s

with countable bases.

12.4 When Ix Behaves Badly

12.4.1 Example

Let start with the example. We define an algebraic countable dcpo E, as a following

subset of the powerset of Z, ordered by subset inclusion. E = {∅, {1}, {1, 2}, {1, 2, 3}, . . . ,

{1, 2, 3, . . .}, {0}, {1, 0,−1}, {1, 2, 0,−2}, {1, 2, 3, 0,−3}, . . .}. For convenience, we intro-

duce a unique letter denotation for each of the elements of E: ⊥E = ∅, e1 = {1}, e2 =

{1, 2}, e3 = {1, 2, 3}, . . . , e∞ = {1, 2, 3, . . .}, 0E = {0}, f1 = {1, 0,−1}, f2 = {1, 2, 0,−2},

f3 = {1, 2, 3, 0,−3}, . . . We will use this notation throughout the chapter. Observe, that

all elements, except e∞, are compact, that elements e∞, f1, f2, . . . are total, and that

ei v fj iff i ≤ j.

r⊥E

re1

re2

re3

bbb
re∞

r0E

rf1 rf2 rf3 b b b

Figure 12.1: Domain E

Now we will see how negation duality works in this example. In our previous
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terminology, x = e∞, y = 0E . The role of a directed set B is played by an increasing

sequence, e1 v e2 v e3 v . . .. Notice that e∞ = tB.

Note also that I0E
= {e∞} and 0E ∈ Ie∞ . You see, that I0E

is not Scott

open (although Ie∞ is Scott open), and dually, we obtain that 0E 6∈
⋃

b∈B Ib (due to

observation, that Ie1 = ∅, Ie2 = {f1}, Ie3 = {f1, f2}, . . .), thus breaking ItB =
⋃

b∈B Ib.

The breaking of this equality prevents the resulting relaxed metrics from being

Scott continuous, as 0E is compact and should naturally carry a finite weight. Since all

Ib and ItB are Scott open, taking Int(Ix) as Nx instead of Ix would not fix this problem.

12.4.2 Solution

Let us rewrite the negation duality as Ix = {y |x ∈ Iy}. What works, somewhat surpris-

ingly, is taking a subset of Ix via taking the interior inside the right-hand side of this

expression: Jx = {y |x ∈ Int(Iy)}.

Lemma 12.4.1 If B is a directed set, JtB =
⋃

b∈B Jb.

Proof. A potentially non-trivial part is to prove JtB ⊆
⋃

b∈B Jb. Consider y ∈ JtB .

By definition of J , tB ∈ Int(Iy). Since Int(Iy) is Scott open, there is b ∈ B, such that

b ∈ Int(Iy), that is y ∈ Jb. 2

In the next subsection, we explain this result in terms of Stone duality. In our

example domain E, Je∞ does not include 0E , unlike Ie∞ , yielding Je∞ =
⋃

i Jei
.

In general, Jx is Alexandrov open, but does not have to be Scott open. E.g.,

in our example domain E, we have that J0E
= I0E

= {e∞}, and thus J0E
is not Scott

open. Due to co-continuity we can extend µ to Alexandrov open sets V , by defining

µ(V ) = µ(Int(V )).

However, in order to use a setup of Section 11.1.4, it is much more convenient

to define Nx = Int(Jx) and to use the following Lemma.

Lemma 12.4.2 If for arbitrary Alexandrov open sets J, Jm,m ∈ M , the equality J =⋃
m∈M Jm holds, then Int(J) =

⋃
m∈M Int(Jm) holds as well.
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Proof. The potentially non-trivial direction is to prove Int(J) ⊆
⋃

m∈M Int(Jm). Con-

sider y ∈ Int(J). By the Border Lemma (Lemma 9.2.1) there is x ∈ J , such that x� y.

Then, because of the condition of the Lemma we are currently proving, there is m ∈M ,

such that x ∈ Jm. Then applying the Border Lemma again, we obtain y ∈ Int(Jm). 2

Hence, Nx = Int(Jx) enables us to satisfy all the requirements of the setup

of Section 11.1.4, except for the requirement that for all x ∈ Total(A), Cx ∪ Nx = A,

which does not hold in general. E.g. consider our example domain E, and observe that

e∞ ∈ Total(A), but 0E 6∈ Cx ∪Nx. (Observe, also that changing Nx to Jx does not fix

this.)

Thus the Theorem 11.1.1 holds, but the Theorem 11.1.2 about the equality of

l(x, y) and u(x, y) does not have to hold, and the resulting induced metric on Total(A)

cannot in general be obtained. E.g., in our example domain E, we have that e∞ ∈

Total(E), but u(e∞, e∞) = µ(Ie∞) − µ(Je∞) = µ({0E}), which is, in general, not zero,

since 0E is compact.

12.4.3 Stone Duality

The first Lemma in the previous subsection holds for the reasons, which are not related

to such specific features of Jx as the use of Int(Iy) (any open set can be used instead)

and the fact, that x and y belong to the same set A.

We analyze this situation in the spirit of Stone duality [30, 55], which is a con-

travariant equivalence between categories of spatial frames (of open sets) and sober

topological spaces.

For the purpose of this subsection only, assume that there is a continuous dcpo

A (Scott topologies of continuous dcpo’s are sober [30]) and a set D, and that we are

given a map U : D → O(A), where O(A) is the frame of Scott open sets of the domain

A.

Now generalize the construction of Jx by considering the map J : A → P(D),

where P(D) is a powerset of D ordered by set-theoretic inclusion and equipped with the

Scott topology. Define J by the formula: J : x 7→ {y ∈ D |x ∈ U(y)}. Then observe
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that the proof of Lemma 12.4.1 still goes through, implying that J is a Scott continuous

function from A to P(D).

Now observe, if one applies J−1 to a subbasic open set ↑{y}, one obtains

J−1(↑{y}) = {x | J(x) ∈↑{y}} = {x | y ∈ J(x)} = {x |x ∈ U(y)} = U(y).

Thus the map U can be thought of as defined on the generators ↑{y} of the

free frame of all Scott open sets on P(D) and giving raise to the frame homomorphism

u : O(P(D)) → O(A) (of course, u = J−1, e.g. for basic open sets, u(↑{y1, . . . , yn}) =

U(y1) ∩ . . . ∩ U(yn), and the similar thing goes for unions of basic sets).

Now, since we are dealing with sober spaces, Stone duality means, that not

only u = J−1 can be obtained from the continuous function J , but also the continuous

function J can be restored from the frame morphism u. And this is the essence of

our definition of J , when we think about U as defined on the generators of the frame

O(P(D)).

12.4.4 Jx Is the Largest Continuous Approximation of Ix

Both Ix and Jx can be considered as functions from A to the powerset of A, P(A).

However, in general, only Jx is Scott continuous. The following theorem shows that, in

some sense, Jx is the best we can do.

Theorem 12.4.1 If f : A → P(A) is a Scott continuous function and ∀x ∈ A. f(x) ⊆

Ix, then ∀x ∈ A. f(x) ⊆ Jx.

Proof. Assume that such Scott continuous function f is given, and for some x, there

is y ∈ f(x), such that y 6∈ Jx, i.e. x 6∈ Int(Iy). However, y ∈ Ix means x ∈ Iy. Now

consider a directed set B = Kx. We have that x = tB and that all b ∈ B are way below

x. Then, taking into account x 6∈ Int(Iy) and applying the Border Lemma, we obtain

that ∀b ∈ B. b 6∈ Iy.

However, the assumption of continuity of f means, that f(tB) =
⋃

b∈B f(b).

Hence, since y ∈ f(tB), there is some b ∈ B, such that y ∈ f(b), hence y ∈ Ib, hence

b ∈ Iy, contradicting the last formula of the previous paragraph. 2
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A similar statement holds for Int(Ix) and Int(Jx), understood as functions from

A to the dual domain of open sets of A.

12.5 The Use of the Lawson Condition

We start with the equivalent formulation of the Lawson condition.

Lemma 12.5.1 Given a continuous dcpo A, the relative Scott and Lawson topologies on

Total(A) coincide if and only if for all x ∈ A, Ix ∩ Total(A) = Int(Ix) ∩ Total(A).

For example, in the domain E from the previous section Lawson condition does

not hold. Indeed, I0E
= {e∞} and e∞ ∈ Total(E). However, Int(I0E

) = ∅. The set

{e∞} is open in the relative Lawson topology, but not in the relative Scott topology.

Now we are going to modify the domain E, in order to obtain a different example,

which would satisfy the Lawson condition. We add a new element, ?, to Z, so that E′

will be a subset of the powerset of Z ∪ {?}, ordered by the set-theoretic inclusion. Let

E′ = E ∪ {e?}, where e? = {?, 1, 2, 3, . . .}.

r⊥E

re1

re2

re3

bbb
re∞

re?

r0E

rf1 rf2 rf3 b b b

Figure 12.2: Domain E′

Now I0E
= {e∞, e?}, so this is still not a Scott open set, however, Int(I0E

) =

{e?} = I0E
∩ Total(E′) = Int(I0E

) ∩ Total(E′). Notice, that J0E
= I0E

here, so J0E
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is still only Alexandrov open. Je∞ is the same as in E, but now e∞ is not a total

element. However, Je? = Je∞ ∪ {0E}, because e? ∈ Int(I0E
), so Je? = Ie? = Int(Je?),

and Ce?
∪ Je?

= Ce?
∪ Int(Je?

) = E′. The set {e?} is open in both Lawson and Scott

relative topologies on Total(E′).

What is going on here is described by the following Theorem.

Theorem 12.5.1 A continuous dcpo A satisfies the Lawson condition if and only if

for all x ∈ Total(A), Jx = Ix. Hence, if the Lawson condition holds, then Cx ∪ Jx =

Cx ∪ Int(Jx) = A.

Proof. Assume that the Lawson condition holds and x ∈ Total(A). Assume, that

y 6v x, i.e. y 6∈ Cx and y ∈ Ix, using the totality of x. Thus, by duality, x ∈ Iy. Because

x ∈ Total(A) and because due to the Lawson condition Iy∩Total(A) = Int(Iy)∩Total(A),

we obtain x ∈ Int(Iy), hence y ∈ Jx.

Conversely, assume ∀x ∈ Total(A). Jx = Ix. Let us prove Iy ∩ Total(A) =

Int(Iy) ∩ Total(A), thus proving the Lawson condition. Take x ∈ Iy ∩ Total(A). By

negation duality, y ∈ Ix, then, by totality of x and our assumptions, y ∈ Jx, which, by

definition of Jx, means that x ∈ Int(Iy).

The rest follows from the observation, that if x ∈ Total(A), Ix is Scott open. 2

Hence if the Lawson condition holds, the resulting µInfo-structure is not defi-

cient, and the Theorem 11.1.2 holds.

12.6 Tolerances and Negative Information

12.6.1 Tolerances, Distinguishability, and Observability

Smyth [52] requires that a tolerance relation is closed in the product topology. Here are

informal reasons for this.

The typical meaning of two points being in the relation of tolerance, x ∼ y, is

that x cannot be distinguished from y, i.e. there is no way to establish, that x and y

differ.
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The natural way to interpret the statement, that x and y can be distinguished,

is to give some “effective” procedure for making such a distinction. Thus, the property of

being distinguishable is observable [51]. Correspondingly, the property x ∼ y is refutable,

hence ∼ should be closed.

The fact that the least closed tolerance for a weakly Hausdorff continuous dcpo

is ↑ also is quite natural in this framework. Indeed, domain elements are thought of

as being only partially known and dynamically increasing in the course of their lives.

Hence the fact that x ↑ y, that is ∃z. x v z, y v z, precisely means that x and y may

approximate the same “genuine” element z, hence we cannot distinguish between them.

Since ↑ is closed in the weakly Hausdorff case, its complement is open, hence observable.

That means that when x ↑ y does not hold, there is some “finite” way to distinguish

between x and y.

12.6.2 J ′ and the Least Closed Tolerance (a Smyth Conjecture)

Consider a continuous dcpo A. In this subsection x, y, v, w ∈ A. Recall that we defined

x 6∼ y = {〈x, y〉 |x ∈ J ′y}.

Lemma 12.6.1 x 6∼ y = {〈x, y〉 | ∃〈v, w〉. v � x,w � y, {v, w} is unbounded}.

Proof. Using the Border Lemma we get x ∈ Int(Jy) iff ∃v ∈ Jy. v � x. By the

definition of Jy, v ∈ Jy iff y ∈ Int(Iv) i.e. ∃w ∈ Iv. w � y. Finally recall that w ∈ Iv iff

{v, w} is unbounded . 2

It is an immediate corollary that 6∼ is symmetric.

Let us show that 6∼ is open in the product topology. If we fix a pair 〈v, w〉 the

set 6∼〈v,w〉= {x | v � x}× {y |w � y} is open, and our 6∼ is the union of all such sets for

all unbounded pairs 〈v, w〉.

Theorem 12.6.1 The relation 6∼ is the complement of the least closed tolerance.

Proof. Consider an open set W ⊆ X ×X, such that 6∼⊂ W . Consider a pair

〈x, y〉 ∈W\ 6∼. Since W is open, we can choose two open sets U ⊆ X and V ⊆ X, such
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that 〈x, y〉 ∈ U × V ⊆ W . Consider a pair 〈p, r〉, p ∈ U, r ∈ V.p � x, r � y. The pair

〈p, r〉 is bounded, otherwise 〈x, y〉 ∈6∼, so we can take z such that p v z, r v z, therefore

z ∈ U , z ∈ V , so 〈z, z〉 ∈ U × V and 〈z, z〉 ∈ W . So the complement of W is not a

tolerance, because it is not reflexive. 2

12.6.3 Examples

In our example domain E, the pair 〈e∞, 0E〉 is unbounded, but belongs to the least closed

tolerance, since these elements cannot be distinguished by looking at the approximation

pairs, 〈e1, 0E〉, 〈e2, 0E〉, . . ..

Moreover, by adding to domain E elements g2 = {0, 2}, g3 = {0, 2, 3}, . . . , gn =

{0, 2, 3, . . . , n}, . . . and g∞ = {0, 2, 3, 4, . . .}, we obtain a domain, where two different

maximal elements, e∞ and g∞, cannot be distinguished via finite observations, because

all their approximations are bounded. Such a situation, when ∃x, y ∈ Total(A). x ∼

y, where ∼ is the least closed tolerance, cannot occur in the presence of the Lawson

condition, because the Lawson condition is equivalent to ∀x ∈ Total(A). Ix = J ′x.

12.7 Tolerances and Lower Bounds of Relaxed Met-

rics

We are going to prove the following statement.

Theorem 12.7.1 x 6∼ y ⇔ l(x, y) 6= 0.

Proof. ⇒. Recall that l(x, y) = µ(Cx ∩ J ′y) + µ(Cy ∩ J ′x). Notice that x 6∼ y

implies x ∈ Cx ∩ J ′y, which implies that Cx ∩ J ′y 6= ∅. Hence J ′y \ Cx ⊂ J ′y, hence

µ(Cx ∩ J ′y) = µ(J ′y) − µ(J ′y \ Cx) > 0 due to the strong non-degeneracy of µ. Hence

l(x, y) > 0.

⇐. l(x, y) > 0 means Cx ∩ J ′y 6= ∅ or Cy ∩ J ′x 6= ∅. It is enough to consider

Cx ∩ J ′y 6= ∅. Since x is the largest element of Cx, we obtain x ∈ J ′y, hence x 6∼ y. 2
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Only upper bounds of relaxed metrics participate in the definition of the relaxed

metric topology. Hence lower bounds are usually considered as only playing an auxiliary

role in the computation of upper bounds. Here we see an example of a quite different

application of lower bounds.

12.7.1 A Continuous Family of Tolerances

A set {〈x, y〉 | l(x, y) ≤ ε}, also forms a tolerance. Indeed, this is a symmetric, reflexive

relation. To see that it is closed, consider a Scott continuous function l : A× A → R+,

where R+ is a segment [0, 1] with the usual ordering and the induced Scott topology,

and observe that the set in question is the inverse image of a Scott closed set [0, ε] ⊆ R+

under l−1.

The resulting family of tolerances parametrized by ε is Scott continuous in the

following sense. The dual domain for R+ is domain R−
>. Here R− is the same segment of

numbers, but with inverse ordering (x v y ⇔ x ≥ y), an element r ∈ R− corresponds to

the open set (r, 1] ⊆ R+, the element > ∈ R−
> corresponds to the open set [0, 1] = R+,

and domains R− and R−
> are equipped with the induced Scott topology.

The function l−1 : R−
> → O(A×A) is Scott continuous, and so is its restriction

on R−. Then l−1(ε) is the complement of the tolerance in question, and we can think

about this complement as representing this tolerance in the dual domain O(A×A).

12.8 Open Problems

It might be useful to extend the Stone duality analysis to Int(Jx) and to be able to speak

about the intuition behind the Lawson condition in the spirit of [51].

Another open question is as follows. If Lawson condition does not hold, can

we obtain some negative results about the existence of µInfo-structures with totality

property, or, more generally, about the existence of relaxed metrics with the property

∀x, y ∈ Total(A). l(x, y) = u(x, y)? Obviously, this question allows a number of varia-

tions, e.g. we know now, that when this question is restricted to the case of Info(x) = Cx,
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such negative results can indeed be obtained.

It seems that tolerances will play an increasingly important role in domain the-

ory. One particularly promising direction of development is to use tolerances and es-

pecially their asymmetric generalizations instead of transitivity of logical inference to

formally express and study the ideas of A.S.Esenin-Vol’pin and P.Vopenka, that large

numbers should be considered infinite, and long proofs and computations should be

considered meaningless [56].
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Part IV

Conclusion
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In the preface we identified the key unsolved Problem A, namely to learn how

to find reasonable approximations for a sufficiently wide class of definitions of domain

elements and Scott continuous functions while spending realistic amount of resources,

as the main obstacle on the path of wider practical applicability of domains with Scott

topology in software engineering.

In our work we achieved considerable progress in the development of analysis on

such domains. In conclusion, we would like to stress the extreme importance of finding

analogs of various series decompositions in domains with Scott topologies. The theory

of such decompositions should incorporate the Scott domain analogs of such seemingly

unrelated things as Fourier series and decimal representations of real numbers and would

most likely represent a considerable step towards solving the Problem A.

This direction of research is also closely related to another aspect of Problem

A, namely how to find compact visual representations of domain elements. Such repre-

sentations, of course, should denote relatively close approximations of the elements in

question.

Failing the solution of Problem A, it is possible that certain mathematical con-

structions in domain theory might give us some hints on how to construct novel algo-

rithms.
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